Citation: Lin′an CAO, Dengyue MA, Gang XU. Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160 shu

Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors

Figures(11)

  • With the rapid development of technology, electrochemical sensors have been widely applied in fields such as disease diagnosis, environmental monitoring, and food safety due to their high sensitivity, good selectivity, low cost, and simple operation. Although traditional sensing materials (such as noble metals, carbon-based materials, or conductive polymers) have made remarkable progress, their limited active site density, low porosity, and non-tunable electronic structures restrict their detection performance in complex systems. In recent years, electrically conductive metal-organic frameworks (EC-MOFs) have offered brand-new research opportunities and development directions for the field of electrochemical sensing. This is attributed to their high specific surface area, abundant pore structure, flexible tunable design characteristics, as well as excellent catalytic performance, efficient electron transport capability, and significant signal amplification effect. This review systematically summarizes the latest research progress of EC-MOFs materials in the field of electrochemical sensing, focusing on the design and synthesis strategies of working electrodes for EC-MOFs-based electrochemical sensors, including in-situ synthesis, ex-situ synthesis, and combined in-situ and ex-situ strategies. Additionally, it provides a detailed review of their breakthrough applications in biomolecular recognition, environmental pollutant monitoring, etc. Meanwhile, the review provides a deep analysis of the key challenges faced by EC-MOFs in the field of electrochemical sensing and outlines their future development directions.
  • 加载中
    1. [1]

      LIANG M P, LIU Y J, LU S, WANG Y, GAO C R, FAN K, LIU H Y. Two-dimensional conductive MOFs toward electrochemical sensors for environmental pollutants[J]. Trends Anal. Chem., 2024, 177: 117800

    2. [2]

      SIMOSKA O, STEVENSON K J. Electrochemical sensors for rapid diagnosis of pathogens in real time[J]. Analyst, 2019, 144(22): 6461-6478

    3. [3]

      LI T, SHANG D W, GAO S W, WANG B, KONG H, YANG G Z, SHU W D, XU P L, WEI G. Two-dimensional material-based electrochemical sensors/biosensors for food safety and biomolecular detection[J]. Biosensors, 2022, 12(5): 314

    4. [4]

      MA T T, LI S M, ZHANG C Y, XU L, BAI Y Y, FU Y L, JI W J, YANG H Y. Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine[J]. Chinese J. Inorg. Chem., 2024, 40(4): 725-735  doi: 10.11862/CJIC.20230351

    5. [5]

      MO X C, ZHU C H, ZHANG Z R, YAN X H, HAN C S, LI J X, ATTFIELD J P, YANG M H. Nitrogen-doped indium oxide electrochemical sensor for stable and selective NO2 detection[J]. Adv. Mater., 2024, 36(41): 2409294

    6. [6]

      GUO S J, WANG E K. Controllable synthesis and application in fuel cells and analytical sensors[J]. Nano Today, 2011, 6(3): 240-264

    7. [7]

      HU J C, ZHANG Z G. Application of electrochemical sensors based on carbon nanomaterials for detection of flavonoids[J]. Nanomaterials, 2020, 10(10): 2020

    8. [8]

      JOHN A, BENNY L, CHERIAN A R, NARAHARI S Y, VARGHESE A, HEGDE G. Electrochemical sensors using conducting polymer/noble metal nanoparticle nanocomposites for the detection of various analytes: A review[J]. J. Nanostruct. Chem., 2021, 11(1): 1-31

    9. [9]

      SHU H, LAI T R, WANG S L, LI M Y, LI H Y, CHEN T, XIAO X C, WANG Y D. The interaction between Fe and Co dual active sites for promoting ultra-sensitive detection of trace paraquat[J]. Chem. Eng. J., 2024, 480: 148180

    10. [10]

      YAGHI O M, LI G M, LI H L. Selective binding and removal of guests in a microporous metal-organic framework[J]. Nature, 1995, 378: 703-706

    11. [11]

      YAO M S, CAO L A, TANG Y X, WANG G E, LIU R H, KUMAR P N, WU G D, DENG W H, HONG W J, XU G. Gas transport regulation in a MO/MOF interface for enhanced selective gas detection[J]. J. Mater. Chem. A, 2019, 7(31): 18397-18403

    12. [12]

      HUANG G, YANG Q H, XU Q, YU S H, JIANG H L. Polydimethylsiloxane coating for a palladium/MOF composite: Highly improved catalytic performance by surface hydrophobization[J]. Angew. Chem.‒Int. Edit., 2016, 55(26): 7379-7383

    13. [13]

      YAO M S, LI W H, XU G. Metal-organic frameworks and their derivatives for electrically-transduced gas sensors[J]. Coord. Chem. Rev., 2021, 426: 213479

    14. [14]

      CHEN T T, WANG F F, CAO S, BAI Y, ZHENG S S, LI W T, ZHANG S T, HU S X, PANG H. In situ synthesis of MOF-74 family for high areal energy density of aqueous nickel-zinc batteries[J]. Adv. Mater., 2022, 34(30): 2201779

    15. [15]

      LIU C L, BAI Y, LI W T, YANG F Y, ZHANG G X, PANG H. In situ growth of three-dimensional MXene/metal-organic framework composites for high-performance supercapacitors[J]. Angew. Chem.‒Int. Edit., 2022, 61(11): e202116282

    16. [16]

      SU L X, WU H, ZHANG S K, CUI C X, ZHOU S N, PANG H. Insight into intermediate behaviors and design strategies of platinum group metal-based alkaline hydrogen oxidation catalysts[J]. Adv. Mater., 2025, 37(4): 2414628

    17. [17]

      QIAO Y X, LIU Q, LU S Y, CHEN G, GAO S Y, LU W B, SUN X P. High-performance non-enzymatic glucose detection: Using a conductive Ni-MOF as an electrocatalyst[J]. J. Mater. Chem. B, 2020, 8(25): 5411-5415

    18. [18]

      YANG X, YI J Q, WANG T, FENG Y A, WANG J W, YU J, ZHANG F L, JIANG Z, LV Z S, LI H C, HUANG T, SI D H, WANG X S, CAO R, CHEN X D. Wet-adhesive on-skin sensors based on metal-organic frameworks for wireless monitoring of metabolites in sweat[J]. Adv. Mater., 2022, 34(44): 2201768

    19. [19]

      NIU K, SUN P C, CHEN J P, LU X B. Dense conductive metal- organic frameworks as robust electrocatalysts for biosensing[J]. Anal. Chem., 2022, 94(49): 17177-17185

    20. [20]

      CAO L A, LI Y Q, HUO Y F, SUN L, LI X Q, CHEN L, YANG X T, YUAN F L, YAO M S. Volatolomics in fritillarias and their identification by orientation controlled cMOF thin film chemiresistors[J]. Chin. J. Chem., 2024, 43(4): 371-377

    21. [21]

      XIE L S, SKORUPSKII G, DINCA M. Electrically conductive metal-organic frameworks[J]. Chem. Rev., 2020, 120(16): 8536-8580

    22. [22]

      YAN X L, CHEN J, SU X, ZHANG J W, WANG C Z, ZHANG H W, LIU Y, WANG L, XU G, CHEN L. Redox synergy: Enhancing gas sensing stability in 2D conjugated metal-organic frameworks via balancing metal node and ligand reactivity[J]. Angew. Chem.‒Int. Edit., 2024, 63(35): e202408189

    23. [23]

      DONG X F, YANG Y, WANG S, HE X F, WANG Y X, CHENG P. Research progress of conductive metal‑organic frameworks[J]. Chinese J. Inorg. Chem., 2025, 41(1): 14-34  doi: 10.11862/CJIC.20240388

    24. [24]

      ZHAO H L, TAN X, CHAI H N, HU L, LI H B, QU L J, ZHANG X J, ZHANG G Y. Recent advances in conductive MOF-based electrochemical sensors[J]. Chin. Chem. Lett., 2024, 36(8): 110571

    25. [25]

      LIU K K, MENG Z, FANG Y, JIANG H L. Conductive MOFs for electrocatalysis and electrochemical sensor[J]. eScience, 2023, 3(6): 100133

    26. [26]

      FENG S H, XU R R. New materials in hydrothermal synthesis[J]. Accounts Chem. Res., 2001, 34(3): 239-247

    27. [27]

      ZHOU Y, HU Q, YU F, RAN G Y, WANG H Y, SHEPHERD N D, DALESSANDRO D M, KURMOO M, ZUO J L. A metal-organic framework based on a nickel bis(dithiolene) connector: Synthesis, crystal structure, and application as an electrochemical glucose sensor[J]. J. Am. Chem. Soc., 2020, 142(48): 20313-20317

    28. [28]

      XU Z H, WANG Q Z, SUI H Z, ZHAO Y Q, WANG L. Carbon cloth-supported nanorod-like conductive Ni/Co bimetal MOF: A stable and high-performance enzyme-free electrochemical sensor for determination of glucose in serum and beverage[J]. Food Chem., 2021, 349: 129202

    29. [29]

      ZHUANG J L, TERFORT A, WOLL C. Formation of oriented and patterned films of metal-organic frameworks by liquid phase epitaxy: A review[J]. Coord. Chem. Rev., 2016, 307: 391-424

    30. [30]

      ZACHER R, YUSENKO K, BETARD A, HENKE S, MOLON M, LADNORG T, SHEKHAH O, SCHUPBACH B, ARCOS T D L, KRASOLSKI M, MEILIKHOV M, WINTER J, TERFORT A, WOLL C, FISCHER R A. Liquid-phase epitaxy of multicomponent layer-based porous coordination polymer thin films of [M(L)(P)0.5] type: Importance of deposition sequence on the oriented growth[J]. Chem.‒Eur. J., 2011, 17(5): 1448-1455

    31. [31]

      YAO M S, LV X J, FU Z H, LI W H, DENG W H, WU G D, XU G. Layer-by-layer assembled conductive metal-organic framework nanofilms for room-temperature chemiresistive sensing[J]. Angew. Chem.‒Int. Edit., 2017, 56(52): 16510-16514

    32. [32]

      ZHENG R, FU Z H, DENG W H, WEN Y Y, WU A Q, YE X L, XU G. The growth mechanism of a conductive MOF thin film in spray-based layer-by-layer liquid phase epitaxy[J]. Angew. Chem.‒Int. Edit., 2022, 61(43): e202212797

    33. [33]

      CAO L A, YAO M S, JIANG H J, KITAGAWA S, YE X L, LI W H, XU G. A highly oriented conductive MOF thin film-based Schottky diode for self-powered light and gas detection[J]. J. Mater. Chem. A, 2020, 8(18): 9085-9090

    34. [34]

      ROH H, QUILL T J, CHEN G, GONG H X, CHO Y, KULIK H J, BAO Z N, SALLEO A, GUMYUSENGE A. Copper-based two- dimensional conductive metal organic framework thin films for ultrasensitive detection of perfluoroalkyls in drinking water[J]. ACS Nano, 2025, 19(6): 6332-6341

    35. [35]

      KEUM C, PARK S, KIM H, KIM H, LEE K H, JEONG Y. Modular conductive MOF-gated field-effect biosensor for sensitive discrimination on the small molecular scale[J]. Chem. Eng. J., 2023, 456: 141079

    36. [36]

      KO M, MENDECKI L, EAGLETON A M, DURBIN C G, STOLZ R M, MENG Z, MIRICA K A. Employing conductive metal-organic frameworks for voltammetric detection of neurochemicals[J]. J. Am. Chem. Soc., 2020, 142(27): 11717-11733

    37. [37]

      MA X H, PANG C H, LI S H, WANG M Y, XIONG Y H, SU L J, LUO J H, XU Z, LIN L Y. Biomimetic synthesis of ultrafine mixed-valence metal-organic framework nanowires and their application in electrochemiluminescence sensing[J]. ACS Appl. Mater. Interfaces, 2021, 13(35): 41987-41996

    38. [38]

      WANG Y, QIAN Y J, ZHANG L M, ZHANG Z H, CHEN S W, LIU J F, HE X, TIAN Y. Conductive metal-organic framework microelectrodes regulated by conjugated molecular wires for monitoring of dopamine in the mouse Brain[J]. J. Am. Chem. Soc, 2023, 145(4): 2118-2126

    39. [39]

      DONG R H, ZHANG T, FENG X L. Interface-assisted synthesis of 2D materials: Trend and challenges[J]. Chem. Rev., 2018, 118(13): 6189-6235

    40. [40]

      TSUKAMOTO T, TAKADA K, SAKAMOTO R, MATSUOKA R, TOYODA R, MAEDA H, YAGI T, NISHIKAWA M, SHINJO N, AMANO S, LOKAWA T, LSHIBASHI N, QI T, KANAYAMA K, KINUGAWA R, KODA Y, KOMURAT, NAKAJIMA S, FUKUYAMA R, FUSE N, MIZUI M, MIYASAKI M, YAMASHITA Y, YAMADA K, ZHANG W X, HAN R C, LIU W Y, TSUBOMURA T, NISHIHARA K. Coordination nanosheets based on terpyridine-zinc(Ⅱ) complexes: As photoactive host materials[J]. J. Am. Chem. Soc., 2017, 139(15): 5359-5366

    41. [41]

      KAMBE T, SAKAMOTO R, HOSHIKO K, TAKADA K, MIYACHI M, RYU J H, SASAKI S, KIM J, NAKAZATO K, TAKATA M, NISHIHARA H. π-Conjugated nickel bis(dithiolene) complex nanosheet[J]. J. Am. Chem. Soc., 2013, 135(7): 2462-2465

    42. [42]

      LUO Y, WU Y H, BRAUN A, HUANG C, LI X Y, MENON C, CHU P K. Defect engineering to tailor metal vacancies in 2D conductive metal-organic frameworks: An example in electrochemical sensing[J]. ACS Nano, 2022, 16(12): 20820-20830

    43. [43]

      WU G D, HUANG J H, ZANG Y, HE J, XU G. Porous field-effect transistors based on a semiconductive metal-organic framework[J]. J. Am. Chem. Soc., 2017, 139(4): 1360-1363

    44. [44]

      YAO M S, XIU J W, HUANG Q Q, LI W H, WU W W, WU A Q, CAO L A, DENG W H, WANG G, XU G. Van der Waals heterostructured MOF-on-MOF thin films: Cascading functionality to realize advanced chemiresistive sensing[J]. Angew. Chem.‒Int. Edit., 2019, 58(42): 14915-14919

    45. [45]

      CHEN X, DONG J J, CHI K, WANG L J, XIAO F, WANG S, ZHAO Y, LIU Y Q. Electrically conductive metal-organic framework thin film-based on-chip micro-biosensor: A platform to unravel surface morphology-dependent biosensing[J]. Adv. Funct. Mater., 2021, 31(51): 2102855

    46. [46]

      CAO L A, WEI M, GUO X, WANG D L, CHEN L, GUO J. Conductive Ni3(HITP)2 nanofilm with asymmetrical morphology prepared by gas-liquid interface self-assembly for glucose sensing[J]. Ionics, 2024, 30(4): 2375-2385

    47. [47]

      LIU J, YANG S Y, SHEN J H, FA H B, HOU C J, YANG M. Conductive metal-organic framework based label-free electrochemical detection of circulating tumor DNA[J]. Microchim. Acta, 2022, 189(10): 391

    48. [48]

      ADEEL M, ASIF K, RAHMAN M M, DANIELE S, CANZONIERI V, RIZZOLIO F. Glucose detection devices and methods based on metal‑organic frameworks and related materials[J]. Adv. Funct. Mater., 2021, 31(52): 2106023

    49. [49]

      GALANT A L, KAUFMAN R C, WILSON J D. Glucose: Detection and analysis[J]. Food Chem., 2015, 188: 149-160

    50. [50]

      QIAO Y X, ZHANG R, HE F Y, HU W L, CAO X W, JIA J F, LU W B, SUN X P. A comparative study of electrocatalytic oxidation of glucose on conductive Ni-MOF nanosheet arrays with different ligands[J]. New J. Chem., 2020, 44: 17849-17853

    51. [51]

      SONG M R, WANG J L, CHEN B Y, WANG L. A facile, nonreactive hydrogen peroxide (H2O2) detection method enabled by ion chromatography with UV detector[J]. Anal. Chem., 2017, 89(21): 11537-11544

    52. [52]

      AHMAD T, LQBAL A, KHAAKI P, HALIM S A, UDDIN J, KHAN A, DEEB S E, AL-HARRASI A. Recent advances in electrochemical sensing of hydrogen peroxide (H2O2) released from cancer cells[J]. Nanomaterials, 2022, 12(9): 1475

    53. [53]

      SOHRABI H, MALEKI F, KADHOM M, KUDAIBERGENOV N, KHATAEE A. Electrochemical-based sensing platforms for detection of glucose and H2O2 by porous metal-organic frameworks: A review of status and prospects[J]. Biosensors, 2023, 13(3): 347

    54. [54]

      ZHANG M D, WANG G, ZHENG B H, LI L Y, LV B N, CAO H, CHEN M D. 3-Layer conductive metal-organic nanosheets as electrocatalysts to enable an ultralow detection limit of H2O2[J]. Nanoscale, 2019, 11(11): 5058-5063

    55. [55]

      HUANG W, XU Y, WANG Z P, LIAO K, ZHANG Y, SUN Y M. Dual nanozyme based on ultrathin 2D conductive MOF nanosheets integrated with gold nanoparticles for electrochemical biosensing of H2O2 in cancer cells[J]. Talanta, 2022, 249: 123612

    56. [56]

      SU Y, BIAN S M, SAWAN M. Real-time in vivo detection techniques for neurotransmitters: A review[J]. Analyst, 2020, 145(19): 6193-6210

    57. [57]

      CHOI H K, CHOI J H, YOON J H. An updated review on electrochemical nanobiosensors for neurotransmitter detection[J]. Biosensors, 2023, 13(9): 892

    58. [58]

      MADHURANTAKAM S, KARNAM J B, BRABAZON D, TAKAI M, AHAD I U, BALAGURU RAYAPPAN J B, KRISHNAN U M. "Nano": An emerging avenue in electrochemical detection of neurotransmitters[J]. ACS Chem. Neurosci., 2020, 11(24): 4024-4047

    59. [59]

      SARFUDEEN S, P K N, BASITH S A, VARGHESE M, JHARIAT P, CHANDRASEKHAR A, PANDA T. A novel mechano-synthesized zeolitic tetrazolate framework for a high-performance triboelectric nanogenerator and self-powered selective neurochemical detection[J]. ACS Appl. Mater. Interfaces, 2024, 16(19): 24851-24862

    60. [60]

      WU F, WU X, DUAN Z J, HUANG Y, LOU X T, XIA F. Biomacromolecule-functionalized AIEgens for advanced biomedical studies[J]. Small, 2019, 15(32): e1804839

    61. [61]

      LI F Q, YANG W Q, ZHAO B R, YANG S, TANG Q Y, CHEN X J, DAI H L, LIU P F. Ultrasensitive DNA-biomacromolecule sensor for the detection application of clinical cancer samples[J]. Adv Sci., 2022, 9(6): 2102804

    62. [62]

      YANG Y, ZHANG J L, LIANG W B, ZHANG J L, XU X L, ZHANG Y J, YUAN R, XIAO D R. Conductive NiCo bimetal-organic framework nanorods with conductivity-enhanced electrochemiluminescence for constructing biosensing platform[J]. Sens. Actuator B‒Chem., 2022, 362: 131802

    63. [63]

      UMAPATHI R, GHOREISHIAN S M, SONWAL S, RANI G M, HUH Y S. Portable electrochemical sensing methodologies for on-site detection of pesticide residues in fruits and vegetables[J]. Coord. Chem. Rev., 2022, 453: 214305

    64. [64]

      LIANG Z, ABDELSHAFY A M, LUO Z S, BELWAL T, LIN X Y, XU Y Q, WANG L, YANG M Y, QI M, DONG Y Y, LI L. Occurrence, detection, and dissipation of pesticide residue in plant‑ derived foodstuff: A state-of-the-art review[J]. Food Chem., 2022, 384: 132494

    65. [65]

      ZHAO Q, LI S H, CHAI R L, REN X, ZHANG C. Two-dimensional conductive metal-organic frameworks based on truxene[J]. ACS Appl. Mater. Interfaces, 2020, 12(6): 7504-7509

    66. [66]

      CAO L A, LI X Q, LI Y Q, HUO Y F, CHEN L. 2D EC-MOF nanowire arrays for highly sensitive electrochemical detection of trace paraquat[J]. Ionics, 2025, 31: 6387-6397

    67. [67]

      WEN Y T, XU W Q, JIANG W X, YANG W H, LIU M W, WU Y, FANG Q, TANG Y J, LI F, HU L Y, GU W L, ZHU C Z. Photo- enhanced UiO-66/Au nanoparticles with high phosphatase-like activity for rapid degradation and detection of paraoxon[J]. Small, 2025, 589: 2411402

    68. [68]

      MA X J, QU Q, YUAN J J, YANG J J, XU S X, ZHANG X F. Multifunctional Fe-doped carbon dots and metal-organic frameworks nanoreactor for cascade degradation and detection of organophosphorus pesticides[J]. Chem. Eng. J., 2023, 464: 142480

    69. [69]

      TARAFDAR A, SIROHI R, BALAKUMARAN P A, RESHMY R, MADHAVAN A, SINDHU R, BINOD P, KUMAR Y, KUMAR D, SIM S J. The hazardous threat of bisphenol A: Toxicity, detection and remediation[J]. J. Hazard. Mater., 2022, 423: 127097

    70. [70]

      ATKARE S, JAGTAP S, LATE D J. Exploring the potential of metal-organic framework based composites as key players in bisphenol detection[J]. Chem. Soc. Rev., 2025, 54: 3736-3774

    71. [71]

      LEI X L, DENG Z Y, ZENG Y B, HUANG S S, YANG Y W, WANG H L, GUO L H, LI L. A novel composite of conductive metal organic framework and molecularly imprinted poly (ionic liquid) for highly sensitive electrochemical detection of bisphenol A[J]. Sens. Actuator B‒Chem., 2021, 339: 129885

    72. [72]

      CHEN J Y, HUANG X Z, YE R H, HUANG D H, WANG Y J, CHEN S. Fabrication of a novel electrochemical sensor using conductive MOF Cu-CAT anchored on reduced graphene oxide for BPA detection[J]. J. Appl. Electrochem., 2022, 52(11): 1617-1628

    73. [73]

      PILLI S, PANDEY A K, PANDEY V, PANDEY K, MUDDAM T, THIRUNAGARI B K, THOTA S T, VARJANI S, TYAGI R D. Detection and removal of poly and perfluoroalkyl polluting substances for sustainable environment[J]. J Environ Manage., 2021, 297: 113336

    74. [74]

      MENGER R F, FUNK E, HENRY C S, BORCH T. Sensors for detecting per- and polyfluoroalkyl substances (PFAS): A critical review of development challenges, current sensors, and commercialization obstacles[J]. Chem. Eng. J., 2021, 417: 129133

    75. [75]

      WEN X Y, HUANG Q W, NIE D X, ZHAO X Y, CAO H J, WU W H, HAN Z. A multifunctional N-doped Cu-MOFs (N-Cu-MOF) nanomaterial-driven electrochemical apta sensor for sensitive detection of deoxynivalenol[J]. Molecules, 2021, 26(8): 2243

    76. [76]

      AN X M, JIANG D, CAO Q Y, XU F M, SHIIGI H, WANG W C, CHEN Z D. Highly efficient dual-color luminophores for sensitive and selective detection of diclazepam based on MOF/COF Bi-mesoporous composites[J]. ACS Sens., 2023, 8(7): 2656-2663

    77. [77]

      DONG S, NIU H W, SUN L W, ZHANG S X, WU D Q, YANG Z, XIANG M. Highly dense Ni-MOF nanoflake arrays supported on conductive graphene/carbon fiber substrate as flexible microelectrode for electrochemical sensing of glucose[J]. J. Electroanal. Chem., 2022, 911: 116219

    78. [78]

      CHEN Y, TIAN Y, ZHU P, DU L P, CHEN W, WU C S. Electrochemically activated conductive Ni-based MOFs for non-enzymatic sensors toward long-term glucose monitoring[J]. Front. Chem., 2020, 8: 602752

    79. [79]

      ZHU R M, SONG Y Z, HU J L, ZHU K D, LIU L M, JIANG Y X, XIE L R, PANG H. Conductive metal-organic framework grown on the nickel-based hydroxide to realize high-performance electrochemical glucose sensing[J]. Chem.‒Eur. J., 2024, 30(31): e202400982

    80. [80]

      HU Q, QIN J, WANG X F, RAN G Y, WANG Q, LIU G X, MA J P, GE J Y, WANG H Y. Cu-based conductive MOF grown in situ on Cu foam as a highly selective and stable non-enzymatic glucose sensor[J]. Front. Chem., 2021, 9: 786970

    81. [81]

      ZHANG T, ZHENG B H, LI L Y, SONG J J, SONG L, ZHANG M D. Fewer-layer conductive metal-organic Langmuir-Blodgett films as electrocatalysts enable an ultralow detection limit of H2O2[J]. Appl. Surf. Sci., 2021, 539: 148255

    82. [82]

      LUO Y, WU Y H, BRAUN A, HUANG C, LI X Y, MENON C, CHU P K. Defect engineering to tailor metal vacancies in 2D conductive metal-organic frameworks: An example in electrochemical sensing[J]. ACS Nano, 2022, 16(12): 20820-20830

    83. [83]

      HUANG W, CHEN Y, WU L Y, LONG M, LIN Z F, SU Q Q, ZHENG F L, WU S Y, LI H Y, YU G X. 3D Co-doped Ni-based conductive MOFs modified electrochemical sensor for highly sensitive detection of L-tryptophan[J]. Talanta, 2022, 247: 123596

    84. [84]

      WANG L C, PAN L Y, HAN Y, HA M N, LI K R, YU H, ZHANG Q H, LI Y G, HOU C Y, WANG H Z. A portable ascorbic acid in sweat analysis system based on highly crystalline conductive nickel-based metal-organic framework (Ni-MOF)[J]. J. Colloid Interface Sci., 2022, 616: 326-337

    85. [85]

      ZHUGE W F, LIU Y X, HUANG W, ZHANG C Z, WEI L Y, PENG J Y. Conductive 2D phthalocyanine-based metal-organic framework as a photoelectrochemical sensor for N-acetyl-L-cysteine detection[J]. Sens. Actuator B‒Chem., 2022, 367: 132028

    86. [86]

      QIU Z W, YANG T, GAO R, JIE G F, HOU W G. An electrochemical ratiometric sensor based on 2D MOF nanosheet/Au/polyxanthurenic acid composite for detection of dopamine[J]. J. Electroanal. Chem., 2019, 835: 123-129

    87. [87]

      LIN X Y, SONG D K, SHAO T C, XUE T, HU W Y, JIANG W C, ZOU X Q, LIU N. A multifunctional biosensor via MXene assisted by conductive metal-organic framework for healthcare monitoring[J]. Adv. Funct. Mater., 2023, 34(11): 2311637

    88. [88]

      ZHANG J L, GAO S Z, YANG Y, LIANG W B, LU M L, ZHANG X Y, XIAO H X, LI Y, YUAN R, XIAO D R. Ruthenium(Ⅱ) complex-grafted conductive metal-organic frameworks with conductivity- and confinement-enhanced electrochemiluminescence for ultrasensitive biosensing application[J]. Biosens. Bioelectron., 2023, 227: 115157

    89. [89]

      ZHENG X, LI C, YANG N R, NIU L, GAO F, WANG Q X. Electrochemical sensing of perfluorooctanoic acid via a rationally designed fluorine-functionalized Cu-MOF and in-depth analysis of sensing mechanism[J]. Anal. Chem., 2025, 97(11): 6347-6358

    90. [90]

      LU S, JIA H X, HUMMEL M, WU Y A, WANG K L, QI X Q, GU Z R. Two-dimensional conductive phthalocyanine-based metal-organic frameworks for electrochemical nitrite sensing[J]. RSC Adv., 2021, 11(8): 4472-4477

  • 加载中
    1. [1]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    2. [2]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    3. [3]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    4. [4]

      Cheng-an Tao Jian Huang Yujiao Li . Exploring the Application of Artificial Intelligence in University Chemistry Laboratory Instruction. University Chemistry, 2025, 40(9): 5-10. doi: 10.12461/PKU.DXHX202408132

    5. [5]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    6. [6]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    7. [7]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    8. [8]

      Tiantian Zheng Huiyi Wang Huimin Li Xuanhe Liu Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032

    9. [9]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    10. [10]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    11. [11]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    12. [12]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    13. [13]

      Renxiu Zhang Xin Zhao Yunfei Zhang . Application of Electrochemical Synthesis in the Teaching of Organic Chemistry. University Chemistry, 2025, 40(4): 174-180. doi: 10.12461/PKU.DXHX202406116

    14. [14]

      Xiaoyong ZHAIYao KOUPingru SUYu TANG . Lanthanide metal-organic framework with msw topology: Synthesis and the application in 2, 4, 6-trinitrophenol detection. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2087-2094. doi: 10.11862/CJIC.20250182

    15. [15]

      Ping LIGeng TANXin HUANGFuxing SUNJiangtao JIAGuangshan ZHUJia LIUJiyang LI . Green synthesis of metal-organic frameworks with open metal sites for efficient ammonia capture. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2063-2068. doi: 10.11862/CJIC.20250020

    16. [16]

      . Synthesis and properties of metal‐organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1-2.

    17. [17]

      Xiaogang YANGXinya ZHANGJing LIHuilin WANGMin LIXiaotian WEIXinci WULufang MA . Synthesis, structure, and photoelectric properties of Zinc(Ⅱ)-triphenylamine based metal-organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2078-2086. doi: 10.11862/CJIC.20250167

    18. [18]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    19. [19]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    20. [20]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

Metrics
  • PDF Downloads(1)
  • Abstract views(427)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return