Citation: Qi HUANG, Youyi WANG, Zhujian MAO, Zhonghui YE, Weihan CHEN, Jui-yeh RAU, Jian HUANG. Enhanced photocatalytic tetracycline degradation via 2D CdS/Ti3AlC2 MAX heterostructure[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(11): 2385-2398. doi: 10.11862/CJIC.20250159 shu

Enhanced photocatalytic tetracycline degradation via 2D CdS/Ti3AlC2 MAX heterostructure

Figures(8)

  • The CdS/Ti3AlC2 heterojunction photocatalyst was synthesized by the hydrothermal method, and its structure and performance were systematically analyzed through various characterization methods, including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS), and photoluminescence (PL) spectroscopy, etc. The results confirmed the successful construction of the composite material and its excellent charge separation ability. Under ultraviolet light irradiation, the photocatalytic degradation performance of tetracycline was studied, and its degradation mechanism was clarified, among which the superoxide radical (·O2-) was the main active species. Under the conditions of pH=7 and catalyst dosage of 0.1 g·L-1, CdS/Ti3AlC2 exhibited excellent photocatalytic performance, with a TC degradation efficiency as high as 96.3%.
  • 加载中
    1. [1]

      DANNER M C, ROBERTSON A, BEHRENDS V, REISS J. Antibiotic pollution in surface fresh waters: Occurrence and effects[J]. Sci. Total Environ., 2019, 664: 793-804  doi: 10.1016/j.scitotenv.2019.01.406

    2. [2]

      KOVALAKOVA P, CIZMAS L, MCDONALD T J, MARSALEK B, FENG M, SHARMA V K. Occurrence and toxicity of antibiotics in the aquatic environment: A review[J]. Chemosphere, 2020, 251: 126351  doi: 10.1016/j.chemosphere.2020.126351

    3. [3]

      LI J P, LI W, LIU K, GUO Y H, DING C, HAN J A, LI P P. Global review of macrolide antibiotics in the aquatic environment: Sources, occurrence, fate, ecotoxicity, and risk assessment[J]. J. Hazard. Mater., 2022, 439: 129628  doi: 10.1016/j.jhazmat.2022.129628

    4. [4]

      REN S J, BOO C, GUO N, WANG S, ELIMELECH M, WANG Y K. Photocatalytic reactive ultrafiltration membrane for removal of antibiotic resistant bacteria and antibiotic resistance genes from wastewater effluent[J]. Environ. Sci. Technol., 2018, 52(15): 8666-8673  doi: 10.1021/acs.est.8b01888

    5. [5]

      LI J J, REN M J, ZHANG L L, ZENG L L, WANG H L, MENG X W. UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@ activated carbon activated persulfate[J]. Chinese J. Inorg. Chem., 2024, 40(10): 1869-1880

    6. [6]

      BALAKRISHNAN A, CHINTHALA M, POLAGANI R K, VO D N. Removal of tetracycline from wastewater using g-C3N4 based photocatalysts: A review[J]. Environ. Res., 2023, 216: 114660  doi: 10.1016/j.envres.2022.114660

    7. [7]

      MOUSAVI S M, MOHTARAM M S, RASOULI K, MOHTARAM S, RAJABI H, SABBAGHI S. Efficient visible-light-driven photocatalytic degradation of antibiotics in water by MXene-derived TiO2-supported SiO2/Ti3C2 composites: Optimisation, mechanism and toxicity evaluation[J]. Environ. Pollut., 2025, 367: 125624  doi: 10.1016/j.envpol.2024.125624

    8. [8]

      WANG Y Y, RAU J Y, MAO Z J, CHEN Z T, HUANG J. Efficient photocatalytic degradation of humic acid in water using N-doped Ti3AlC2 MAX[J]. ChemistrySelect, 2024, 9(39): e202304269  doi: 10.1002/slct.202304269

    9. [9]

      WANG M, HUA J H, YANG Y L. Fabrication of CDs/CdS-TiO2 ternary nano-composites for photocatalytic degradation of benzene and toluene under visible light irradiation[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2018, 199: 102-109  doi: 10.1016/j.saa.2018.03.041

    10. [10]

      TASLEEM S, TAHIR M, ZAKARIA Z Y. Fabricating structured 2D Ti3AlC2 MAX dispersed TiO2 heterostructure with Ni2P as a cocatalyst for efficient photocatalytic H2 production[J]. J. Alloy. Compd., 2020, 842: 155752  doi: 10.1016/j.jallcom.2020.155752

    11. [11]

      ZHU M, WANG Y X, LI X, XU Y X, ZHU J W, WANG Z H, ZHU Y, HUANG X C, XU D, HOSSAINE A M S. Construction of AgVO3/ZIF-8 composites for enhanced degradation of tetracycline[J]. Chinese J. Inorg. Chem., 2025, 41(9): 994-1006

    12. [12]

      TAHIR B, ER P W, TAHIR M, NAWAWI M G M, SIRAJ M, ALIAS H, FATEHMULLA A. Tailoring metal/support interaction in 0D TiO2 NPs/MPs embedded 2D MAX composite with boosted interfacial charge carrier separation for stimulating photocatalytic H2 production[J]. J. Environ. Chem. Eng., 2020, 8(6): 104529  doi: 10.1016/j.jece.2020.104529

    13. [13]

      TAHIR M, MANSOOR R. Constructing a stable 2D Ti3AlC2 MnAXm cocatalyst-modified g-C3N4/CoAl-LDH/Ti3AlC2 heterojunction for efficient dry and bireforming of methane for photocatalytic syngas production[J]. J. Alloy. Compd., 2023, 947: 169457  doi: 10.1016/j.jallcom.2023.169457

    14. [14]

      WANG Y Y, RAU J Y, MAO Z J, HUANG Q, ZHU Q H, ZHEN Z T, HUANG J. Efficient hydrogen evolution by using two-dimensional EMOF(Ti)/MAX-Cu novel photocatalysts synthesized via the bi-phase emulsification method[J]. J. Mater. Chem. A, 2025, 13(21): 16032-16043  doi: 10.1039/D5TA00508F

    15. [15]

      NG W H K, GNANAKUMAR E S, BATYREV E, SHARMA S K, PUJARI P K, GREER H F, ZHOU W, SAKIDJA R, ROTHENBERG G, BARSOUM M W, SHIJU N R. The Ti3AlC2 MAX phase as an efficient catalyst for oxidative dehydrogenation of n-butane[J]. Angew. Chem. -Int. Edit., 2018, 57(6): 1485-1490  doi: 10.1002/anie.201702196

    16. [16]

      LIU X Y, SAYED M, BIE C B, CHENG B, HU B W, YU J G, ZHANG L Y. Hollow CdS-based photocatalysts[J]. J Materiomics, 2021, 7(3): 419-439  doi: 10.1016/j.jmat.2020.10.010

    17. [17]

      AI Z Z, ZHAO G, ZHONG Y Y, SHAO Y L, HUANG B B, WU Y Z, HAO X P. Phase junction CdS: High efficient and stable photocatalyst for hydrogen generation[J]. Appl. Catal. B-Environ., 2018, 221: 179-186  doi: 10.1016/j.apcatb.2017.09.002

    18. [18]

      AZIZ M I, MUGHAL F, NAEEM H M, ZEB A, TAHIR M A, BASIT M A. Evolution of photovoltaic and photocatalytic activity in anatase-TiO2 under visible light via simplistic deposition of CdS and PbS quantum-dots[J]. Mater. Chem. Phys., 2019, 229: 508-513  doi: 10.1016/j.matchemphys.2019.03.042

    19. [19]

      JIANG M, LIU X Y, ZHANG M Y, WU Z J, ZHENG Y J, LIANG Y J, WANG W Z, JIA Y. Hot-electron injection and charge carrier lifetime prolongation enhance the photoelectrochemical performance of a plasmonic CdS/Au photoanode[J]. J. Phys. Chem. C, 2021, 125(31): 17109-17116  doi: 10.1021/acs.jpcc.1c04965

    20. [20]

      MA L G, AI X Q, YANG X M, CAO X X, HAN D R, SONG X, JIANG H L, YANG W, YAN S L, WU X S. Cd(Ⅱ)-based metal-organic framework-derived CdS photocatalysts for enhancement of photocatalytic activity[J]. J. Mater. Sci., 2021, 56(14): 8643-8657  doi: 10.1007/s10853-021-05855-9

    21. [21]

      KHYRUN S M F, CHRISTY A J, USHA R, NEHRU L C, SURESH S. Novel solution combustion synthesis of CeO2/CuO nanocomposite for photocatalytic and biological applications[J]. Opt. Mater., 2023, 139: 113756  doi: 10.1016/j.optmat.2023.113756

    22. [22]

      ASGARI G, SEIDMOHAMMADI A, SALARI M, RAMAVANDI B, FARADMAL J. Catalytic ozonation assisted by rGO/C-MgO in the degradation of humic acid from aqueous solution: modeling and optimization by response surface methodology, kinetic study[J]. Desalination Water Treat., 2020, 174: 215-229  doi: 10.5004/dwt.2020.24869

    23. [23]

      REYES-GARCIA E A, SUN Y, REYES-GIL K R, RAFTERY D. Solid-state NMR and EPR analysis of carbon-doped titanium dioxide photocatalysts (TiO2-xCx)[J]. Solid State Nucl. Magn. Reson., 2009, 35(2): 74-81  doi: 10.1016/j.ssnmr.2009.02.004

    24. [24]

      SCHEIBE B, TADYSZAK K, JAREK M, MICHALAK N, KEMPIŃSKI M, LEWANDOWSKI M, PEPLIŃSKA B, CHYBCZYŃSKA K. Study on the magnetic properties of differently functionalized multilayered Ti3C2Tx MXenes and Ti-Al-C carbides [J]. Appl. Surf. Sci., 2019, 479: 216-224  doi: 10.1016/j.apsusc.2019.02.055

    25. [25]

      TAHIR M. Enhanced photocatalytic CO2 reduction to fuels through bireforming of methane over structured 3D MAX Ti3AlC2/TiO2 heterojunction in a monolith photoreactor[J]. J. CO2 Util., 2020, 38: 99-112  doi: 10.1016/j.jcou.2020.01.009

    26. [26]

      NOOR S, SAJJAD S, LEGHARI S A K, FLOX C, AHMAD S. Competitive role of nitrogen functionalities of N doped GO and sensitizing effect of Bi2O3 QDs on TiO2 for water remediation[J]. J. Environ. Sci., 2021, 108: 107-119  doi: 10.1016/j.jes.2021.02.009

    27. [27]

      CHANG S K, ABBASI Q U A, ABBASI Z, KHUSHBAKHT F, ULLAH I, UR REHMAN F, HAFEEZ M. Rapid pH-dependent photocatalytic degradation of methylene blue by CdS nanorods synthesized through hydrothermal process[J]. Arab. J. Chem., 2024, 17(1): 105422  doi: 10.1016/j.arabjc.2023.105422

    28. [28]

      DAS S, AHN Y H. Synthesis and application of CdS nanorods for LED-based photocatalytic degradation of tetracycline antibiotic[J]. Chemosphere, 2022, 291: 132870  doi: 10.1016/j.chemosphere.2021.132870

    29. [29]

      WEI Y J, XUE C Y, JIN L, ZHANG J W, ZHAO Z B, FENG L L, LIU J, ZHANG J B. Defect-induced atomic-level intimate interface of a hollow Ov-CeO2/CdS photocatalyst with a Z-scheme to boost hydrogen evolution[J]. J. Colloid Interface Sci., 2023, 646: 209-218  doi: 10.1016/j.jcis.2023.05.063

    30. [30]

      XIE Z J, FENG Y P, WANG F L, CHEN D N, ZHANG Q X, ZENG Y Q, LV W Y, LIU G G. Construction of carbon dots modified MoO3/g-C3N4 Z-scheme photocatalyst with enhanced visible-light photocatalytic activity for the degradation of tetracycline[J]. Appl. Catal. B-Environ, 2018, 229: 96-104  doi: 10.1016/j.apcatb.2018.02.011

    31. [31]

      JIANG W, LI Z, LIU C B, WANG D D, YAN G S, LIU B, CHE G B. Enhanced visible-light-induced photocatalytic degradation of tetracycline using BiOI/MIL-125(Ti) composite photocatalyst[J]. J. Alloy. Compd., 2021, 854: 119287

    32. [32]

      WANG Y, ZHANG X, LIU Y J, ZHAO Y B, XIE C, SONG Y X, YANG P. Crystallinity and phase controlling of g-C3N4/CdS hetrostructures towards high efficient photocatalytic H2 generation[J]. Int. J. Hydrog. Energy, 2019, 44(57): 30151  doi: 10.1016/j.ijhydene.2019.09.181

    33. [33]

      HAN Z H, DONG Q, CHEN G, DONG H J, ZHOU R. Interface Cd—N bond bridge accelerating charge separation to the enhanced visible light driven hydrogen production from water splitting on polyaniline@Cd-Zn-S photocatalyst[J]. Sep. Purif. Technol., 2022, 300: 121839  doi: 10.1016/j.seppur.2022.121839

    34. [34]

      LEE S, DEVARAYAPALLI K C, KIM B, LIM Y, LEE D S. Fabrication of MXene-derived TiO2/Ti3C2 integrated with a ZnS heterostructure and their synergistic effect on the enhanced photocatalytic degradation of tetracycline[J]. J. Mater. Sci. Technol., 2024, 198: 186-199  doi: 10.1016/j.jmst.2024.02.026

    35. [35]

      BUI H T, VAN THUAN D, THI HUONG P, NGUYEN K D, NGUYEN M V, CHU T T H, LE Q V, JITAE K, DEVANESAN S, ALSALHI M S, NGUYEN T L. Enhanced photocatalytic H2 evolution and photodegradation of antibiotic tetracycline in wastewater by TiO2@Ti3C2[J]. Int. J. Hydrog. Energy, 2024, 52: 11-19

    36. [36]

      HUANG K L, LI C H, MENG X C. In-situ construction of ternary Ti3C2 MXene@TiO2/ZnIn2S4 composites for highly efficient photocatalytic hydrogen evolution[J]. J. Colloid Interface Sci, 2020, 580: 669-680  doi: 10.1016/j.jcis.2020.07.044

    37. [37]

      DING Z P, SUN M X, LIU W Z, SUN W B, MENG X L, ZHENG Y Q. Ultrasonically synthesized N-TiO2/Ti3C2 composites: Enhancing sonophotocatalytic activity for pollutant degradation and nitrogen fixation[J]. Sep. Purif. Technol., 2021, 276: 119287  doi: 10.1016/j.seppur.2021.119287

    38. [38]

      TASLEEM S, TAHIR M. Investigating the performance of liquid and gas phase photoreactors for dynamic H2 production over bimetallic TiO2 and Ni2P dispersed MAX Ti3AlC2 monolithic nanocomposite under UV and visible light[J]. Environ. Chem. Eng., 2021, 9(4): 105351  doi: 10.1016/j.jece.2021.105351

    39. [39]

      HUANG H S, SONG Y, LI N J, CHEN D Y, XU Q F, LI H, HE J H, LU J M. One-step in-situ preparation of N-doped TiO2@C derived from Ti3C2 MXene for enhanced visible-light driven photodegradation[J]. Appl. Catal. B-Environ, 2019, 251: 154-61  doi: 10.1016/j.apcatb.2019.03.066

    40. [40]

      MAKUŁA P, PACIA M, MACYK W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-Vis spectra [J]. Phys. Chem. Lett, 2018, 9(23): 6814-6817  doi: 10.1021/acs.jpclett.8b02892

    41. [41]

      MA D D, SHI J W, SUN L, SUN Y X, MAO S M, PU Z X, HE C, ZHANG Y J, HE D, WANG H K, CHENG Y H. Knack behind the high performance CdS/ZnS-NiS nanocomposites: Optimizing synergistic effect between cocatalyst and heterostructure for boosting hydrogen evolution[J]. Chem. Eng. J., 2022, 431: 133446  doi: 10.1016/j.cej.2021.133446

    42. [42]

      MA W, WANG N, GUO Y, YANG L Q, LV M F, TANG X, LI S T. Enhanced photoreduction CO2 activity on g-C3N4: By synergistic effect of nitrogen defective-enriched and porous structure, and mechanism insights[J]. Chem. Eng. J., 2020, 388: 124288  doi: 10.1016/j.cej.2020.124288

    43. [43]

      LI X, YU Y, WANG Y X, DI Y, LIU J Q, LI D Y, WANG Y M, ZHU Z, LIU H L, WEI M B. Withered magnolia-derived BCDs onto 3D flower-like Bi2WO6 for efficient photocatalytic TC degradation and CO2 reduction[J]. J. Alloy. Compd., 2023, 965: 171520  doi: 10.1016/j.jallcom.2023.171520

    44. [44]

      TANG Y X, ZHANG X, MA Y X, WANG X T, SU C H, ZHANG D F, PU X P, GENG Y L. One-dimensional core-shell Zn0.1Cd0.9S/ SnIn4S8 heterojunction for enhanced visible light photocatalytic degradation[J]. Sep. Purif. Technol., 2020, 230: 115896  doi: 10.1016/j.seppur.2019.115896

    45. [45]

      AZALOK K A, OLADIPO A A, GAZI M. UV-light-induced photocatalytic performance of reusable MnFe-LDO-biochar for tetracycline removal in water[J]. J. Photochem. Photobiol. A-Chem., 2021, 405: 112976-112986  doi: 10.1016/j.jphotochem.2020.112976

    46. [46]

      ZHOU Q, ZHANG L H, ZHANG L F, JIANG B, SUN Y L. In-situ constructed 2D/2D ZnIn2S4/Bi4Ti3O12 S-scheme heterojunction for degradation of tetracycline: Performance and mechanism insights[J]. J. Hazard. Mater., 2022, 438: 129438  doi: 10.1016/j.jhazmat.2022.129438

    47. [47]

      AMARZADEH M, AZQANDI M, NATEQ K, RAMAVANDI B, KHAN N, NASSEH N. Heterogeneous Fenton-like photocatalytic process towards the eradication of tetracycline under UV irradiation: Mechanism elucidation and environmental risk analysis[J]. Water, 2023, 15(13): 1-21

    48. [48]

      SIDDHARDHAN E V, SURENDER S, ARUMANAYAGAM T. Degradation of tetracycline drug in aquatic environment by visible light active CuS/CdS photocatalyst[J]. Inorg. Chem. Commun., 2023, 147: 110244  doi: 10.1016/j.inoche.2022.110244

    49. [49]

      BELHOUCHET N, HAMDI B, CHENCHOUNI H, BESSEKHOUAD Y. Photocatalytic degradation of tetracycline antibiotic using new calcite/titania nanocomposites[J]. J. Photochem. Photobiol. A-Chem., 2019, 372: 196-205  doi: 10.1016/j.jphotochem.2018.12.016

    50. [50]

      IKHLEF-TAGUELMIMT T, HAMICHE A, YAHIAOUI I, BENDELLALI T, LEBIK-ELHADI H, AIT-AMAR H, AISSANI-BENISSAD F. Tetracycline hydrochloride degradation by heterogeneous photocatalysis using TiO2(P25) immobilized in biopolymer (chitosan) under UV irradiation[J]. Water Sci. Technol., 2020, 82(8): 1570-1578  doi: 10.2166/wst.2020.432

    51. [51]

      CAI A H, DENG J, XU M Y, ZHU T X, ZHOU S Q, LI J, WANG G F, LI X Y. Degradation of tetracycline by UV activated monochloramine process: Kinetics, degradation pathway, DBPs formation and toxicity assessment[J]. Chem. Eng. J., 2020, 395: 125090-125101  doi: 10.1016/j.cej.2020.125090

    52. [52]

      GULEN B, DEMIRCIVI P, SIMSEK E B. UV-A light irradiated photocatalytic performance of hydrothermally obtained W doped BaZrO3 catalyst against the degradation of levofloxacin and tetracycline antibiotic[J]. J. Photochem. Photobiol. A-Chem., 2021, 404: 112869-112878  doi: 10.1016/j.jphotochem.2020.112869

    53. [53]

      YANG L, WANG J, ZHANG Y, ZHOU B H, TAN P F, PAN J. Construction of S-scheme BiOCl/CdS composite for enhanced photocatalytic degradation of antibiotic[J]. J. Mater. Sci. -Mater. Electron., 2022, 33(16): 13303-13315  doi: 10.1007/s10854-022-08269-8

    54. [54]

      NAGHIZADEH A, ETEMADINIA T, DERAKHSHANI E, ESMATI M. Graphitic carbon nitride loaded on powdered mesoporous silica nanoparticles for photocatalytic tetracycline antibiotic degradation under UV-C light irradiation[J]. Res. Chem. Intermed., 2023, 49(3): 1165-1177  doi: 10.1007/s11164-022-04942-z

    55. [55]

      QI N, WANG P F, WANG C, AO Y H. Effect of a typical antibiotic (tetracycline) on the aggregation of TiO2 nanoparticles in an aquatic environment[J]. J. Hazard. Mater., 2018, 341: 187-197  doi: 10.1016/j.jhazmat.2017.07.046

    56. [56]

      ZHU X D, WANG Y J, SUN R J, ZHOU D M. Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2[J]. Chemosphere, 2013, 92(8): 925-932  doi: 10.1016/j.chemosphere.2013.02.066

    57. [57]

      WANG D B, JIA F Y, WANG H, CHEN F, FANG Y, DONG W B, ZENG G M, LI X M, YANG Q, YUAN X Z. Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs[J]. J. Colloid Interface Sci., 2018, 519: 273-284  doi: 10.1016/j.jcis.2018.02.067

    58. [58]

      NAGAMINE M, OSIAL M, JACKOWSKA K, KRYSINSKI P, WIDERA-KALINOWSKA J. Tetracycline photocatalytic degradation under CdS treatment[J]. J. Mar. Sci. Eng., 2020, 8(7): 483-502  doi: 10.3390/jmse8070483

    59. [59]

      HE X H, KAI T H, DING P. Heterojunction photocatalysts for degradation of the tetracycline antibiotic: A review[J]. Environ. Chem. Lett., 2021, 19(6): 4563-4601  doi: 10.1007/s10311-021-01295-8

    60. [60]

      KHAN M H, BAE H, JUNG J Y. Tetracycline degradation by ozonation in the aqueous phase: Proposed degradation intermediates and pathway[J]. J. Hazard. Mater., 2010, 181(1): 659-665

  • 加载中
    1. [1]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    2. [2]

      Min ZHUYuxin WANGXiao LIYaxu XUJunwen ZHUZihao WANGYu ZHUXiaochen HUANGDan XUMonsur Showkot Hossain Abul . Construction of AgVO3/ZIF-8 composites for enhanced degradation of tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 994-1006. doi: 10.11862/CJIC.20240392

    3. [3]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    4. [4]

      Bangdi GEXiaowei SONGZhiqiang LIANG . A bifunctional three-dimensional Eu-MOF fluorescent probe for highly sensitive detection of 2, 4, 6-trinitrophenol and tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2165-2174. doi: 10.11862/CJIC.20250190

    5. [5]

      Liyong DUYi LIUGuoli YANG . Preparation and triethylamine sensing performance of ZnSnO3/NiO heterostructur. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 729-740. doi: 10.11862/CJIC.20240404

    6. [6]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    7. [7]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    8. [8]

      Xiaofan ZHANGYu DUANMeijie SHINan LURenhong LIXiaoqing YAN . Z-scheme Co3O4/BiOBr heterojunction for efficient photoreduction CO2 reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1878-1888. doi: 10.11862/CJIC.20250079

    9. [9]

      Lixing LUShaoxian LIUJian XUZiqi JINJiongjia CHENGJiyang ZHAOFubo WANGHaiying WANG . [FeFe]-hydrogenase-containing compound and its photocatalytic H2-production performance. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2584-2590. doi: 10.11862/CJIC.20250200

    10. [10]

      Ruolin CHENGYue WANGFei YANGHuagen LIANGShijian LU . Application of metal-organic frameworks (MOFs) in photocatalytic CO2 cycloaddition reaction: A mini review. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2429-2440. doi: 10.11862/CJIC.20250242

    11. [11]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    12. [12]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    13. [13]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    14. [14]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    15. [15]

      Jin ZHANGYuting WANGBin YUYuxin ZHONGYufeng ZHANG . Corn straw-derived carbon/BiOBr composite: Synthesis and photocatalytic degradation performance for rhodamine B. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1397-1408. doi: 10.11862/CJIC.20250028

    16. [16]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    17. [17]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    18. [18]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    19. [19]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    20. [20]

      Rui LIUXinjun ZHOUTao WANG . Photocatalytic degradation performance of tetracycline by MOF-74-Mn/g-C3N4 Z-type heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1796-1804. doi: 10.11862/CJIC.20250033

Metrics
  • PDF Downloads(0)
  • Abstract views(309)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return