Citation: Shanqing YANG, Lulu WANG, Qiang ZHANG, Jiajia LI, Yilong LI, Tongliang HU. A propane-selective metal-organic framework for inverse selective adsorption propane/propylene separation[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(10): 2138-2148. doi: 10.11862/CJIC.20250154 shu

A propane-selective metal-organic framework for inverse selective adsorption propane/propylene separation

  • Corresponding author: Tongliang HU, tlhu@nankai.edu.cn
  • Received Date: 9 May 2025
    Revised Date: 2 September 2025

Figures(6)

  • We report a robust pillar-layered metal-organic framework, Zn-tfbdc-dabco (tfbdc: tetrafluoroterephthalate, dabco: 1, 4-diazabicyclo[2.2.2]octane), featuring the fluorinated pore environment, for the preferential binding of propane over propylene and thus highly inverse selective separation of propane/propylene mixture. The inverse propane-selective performance of Zn-tfbdc-dabco for the propane/propylene separation was validated by single-component gas adsorption isotherms, isosteric enthalpy of adsorption calculations, ideal adsorbed solution theory calculations, along with the breakthrough experiment. The customized fluorinated networks served as a propane-trap to form more interactions with the exposed hydrogen atoms of propane, as unveiled by the simulation studies at the molecular level. With the advantage of inverse propane-selective adsorption behavior, high adsorption capacity, good cycling stability, and low isosteric enthalpy of adsorption, Zn-tfbdc-dabco can be a promising candidate adsorbent for the challenging propane/propylene separation to realize one-step purification of the target propylene substance.
  • 加载中
    1. [1]

      PARASAR D, ELASHKAR A H, YAKOVENKO A A, JAYARATNA N B, EDWARDS B L, TELFER S G, DIAS H V R, COWAN M G. Overcoming fundamental limitations in adsorbent design: Alkene adsorption by non-porous copper(Ⅰ) complexess[J]. Angew. Chem.‒Int. Edit., 2020,59:21001-21006. doi: 10.1002/anie.202010405

    2. [2]

      SHOLL D S, LIVELY R P. Seven chemical separations to change the world[J]. Nature, 2016,532:435-437.

    3. [3]

      CADIAU A, ADIL K, BHATT P M, BELMABKHOUT Y, EDDAOUDI M. A metal-organic framework-based splitter for separating propylene from propane[J]. Science, 2016,353:137-140. doi: 10.1126/science.aaf6323

    4. [4]

      ZENG H, XIE M, WANG T, WEI R J, XIE X J, ZHAO Y, LU W, LI D. Orthogonal-array dynamic molecular sieving of propylene/propane mixtures[J]. Nature, 2021,595:542-548. doi: 10.1038/s41586-021-03627-8

    5. [5]

      XIE Y, SHI Y S, MORALES E M C, El KARCH A, WANG B, ARMAN H, TAN K, CHEN B L. Optimal binding affinity for sieving separation of propylene from propane in an oxyfluoride anion-based metal-organic framework[J]. J. Am. Chem. Soc., 2023,145:2386-2394. doi: 10.1021/jacs.2c11365

    6. [6]

      WANG H, DONG X L, COLOMBO V, WANG Q N, LIU Y Y, LIU W, WANG X L, HUANG X Y, PROSERPIO D M, SIRONI A, HAN Y, LI J. Tailor-made microporous metal-organic frameworks for the full separation of propane from propylene through selective size exclusion[J]. Adv. Mater., 2018,301805088. doi: 10.1002/adma.201805088

    7. [7]

      YANG S Q, HU T L. Reverse-selective metal-organic framework materials for the efficient separation and purification of light hydrocarbons[J]. Coord. Chem. Rev., 2022,468214628. doi: 10.1016/j.ccr.2022.214628

    8. [8]

      LI J R, KUPPLER R J, ZHOU H C. Selective gas adsorption and separation in metal-organic frameworks[J]. Chem. Soc. Rev., 2009,38:1477-1504. doi: 10.1039/b802426j

    9. [9]

      MA X L, WILLIAMS S, WEI X T, KNIEP J, LIN Y S. Propylene/propane mixture separation characteristics and stability of carbon molecular sieve membranes[J]. Ind. Eng. Chem. Res., 2015,54:9824-9831. doi: 10.1021/acs.iecr.5b02721

    10. [10]

      YUAN Y F, WANG Y S, ZHANG X L, LI W C, HAO G P, HAN L, LU A H. Wiggling mesopores kinetically amplify the adsorptive separation of propylene/propane[J]. Angew. Chem.‒Int. Edit., 2021,60:19063-19067. doi: 10.1002/anie.202106523

    11. [11]

      WANG J, MA C, LIU J Q, LIU Y, XU X Q, XIE M, WANG H, WANG L, GUO P, LIU Z M. Pure silica with ordered silanols for propylene/propane adsorptive separation unraveled by three‑ dimensional electron diffraction[J]. J. Am. Chem. Soc., 2023,145:6853-6860. doi: 10.1021/jacs.2c13847

    12. [12]

      GRANDE C A, RODRIGUES A E. Propane/propylene separation by pressure swing adsorption using zeolite 4A[J]. Ind. Eng. Chem. Res., 2005,44:8815-8829. doi: 10.1021/ie050671b

    13. [13]

      GAO J K, CAI Y L, QIAN X F, LIU P X, WU H, ZHOU W, LIU D X, LI L B, LIN R B, CHEN B L. A microporous hydrogen-bonded organic framework for the efficient capture and purification of propylene[J]. Angew. Chem.‒Int. Edit., 2021,60:20400-20406. doi: 10.1002/anie.202106665

    14. [14]

      CHEN Y, YANG Y S, WANG Y, XIONG Q Z, YANG J F, XIANG S C, LI L B, LI J P, ZHANG Z J, CHEN B L. Ultramicroporous hydrogen-bonded organic framework material with a thermoregulatory gating effect for record propylene separation[J]. J. Am. Chem. Soc., 2022,144:17033-17040. doi: 10.1021/jacs.2c06585

    15. [15]

      DONG Q B, HUANG Y H, WAN J M, LU Z Y, WANG Z X, GU C, DUAN J G, BAI J F. Confining water nanotubes in a Cu10O13-based metal‑organic framework for propylene/propane separation with record-high selectivity[J]. J. Am. Chem. Soc., 2023,145:8043-8051. doi: 10.1021/jacs.3c00515

    16. [16]

      YANG S Q, WANG L L, KRISHNA R, XING B, ZHOU L, ZHANG F Y, ZHANG Q, LI Y L, BAO C S, HU T L. Efficient C3H6/C3H8 separation within a bifunctional ultramicroporous metal-organic framework with high purity and record packing density[J]. Chin. Chem. Lett., 2024110556. doi: 10.1016/j.cclet.2024.110556

    17. [17]

      FURUKAWA H, CORDOVA K E, O'KEEFFE M, YAGHI O M. The chemistry and applications of metal-organic frameworks[J]. Science, 2013,3411230444. doi: 10.1126/science.1230444

    18. [18]

      QAZVINI O T, BABARAO R, TELFER S G. Selective capture of carbon dioxide from hydrocarbons using a metal-organic framework[J]. Nat. Commun., 2021,12197. doi: 10.1038/s41467-020-20489-2

    19. [19]

      MANDAL S, NATARAJAN S, MANI P, PANKAJAKSHAN A. Post-synthetic modification of metal-organic frameworks toward applications[J]. Adv. Funct. Mater., 2021,312006291. doi: 10.1002/adfm.202006291

    20. [20]

      MACREADIE L K, IDREES K B, SMOLJAN C S, FARHA O K. Expanding linker dimensionality in metal-organic frameworks for sub-angstrom pore control for separation applications[J]. Angew. Chem.‒Int. Edit., 2023,62e202304094. doi: 10.1002/anie.202304094

    21. [21]

      ZHANG Z Q, PEH S B, KANG C J, CHAI K G, ZHAO D. Metal- organic frameworks for C6‑C8 hydrocarbon separations[J]. EnergyChem, 2021,3100057. doi: 10.1016/j.enchem.2021.100057

    22. [22]

      YANG S Q, KRISHAN R, CHEN H, LI L, ZHOU L, AN Y F, ZHANG F Y, ZHANG Q, ZHANG Y H, LI W, HU T L, BU X H. Immobilization of the polar group into an ultramicroporous metal- organic framework enabling benchmark inverse selective CO2/C2H2 separation with record C2H2 production[J]. J. Am. Chem. Soc., 2023,145:13901-13911. doi: 10.1021/jacs.3c03265

    23. [23]

      WANG Z W, LI S D, WANG Z X, CHEN S M, WANG F, ZHANG J. Designing homochiral metal-organic frameworks with ultrahigh surface areas and stability for practical applications[J]. Sci. Bull., 2025,70:1038-1041. doi: 10.1016/j.scib.2025.01.012

    24. [24]

      LI H Z, LI Q H, YAO M, HAN Y P, OTAKE K I, KITAGAWA S, WANG F, ZHANG J. Metal-organic framework with structural flexibility responding specifically to acetylene and its adsorption behavior[J]. ACS Appl. Mater. Interfaces, 2022,14:45451-45457. doi: 10.1021/acsami.2c13599

    25. [25]

      HU T L, WANG H L, LI B, KRISHNA R, WU H, ZHOU W, ZHAO Y F, HAN Y, WANG X, ZHU W D, YAO Z Z, XIANG S C, CHEN B L. Microporous metal-organic framework with dual functionalities for highly efficient removal of acetylene from ethylene/acetylene mixtures[J]. Nat. Commun., 2015,67328. doi: 10.1038/ncomms8328

    26. [26]

      LI J, JIANG L Y, CHEN S, KIRCHON A, LI B, LI Y S, ZHOU H C. Metal-organic framework containing planar metal-binding sites: Efficiently and cost-effectively enhancing the kinetic separation of C2H2/C2H4[J]. J. Am. Chem. Soc., 2019,141:3807-3811. doi: 10.1021/jacs.8b13463

    27. [27]

      FAN W D, YUAN S, WANG W J, FENG L, LIU X P, ZHANG X R, WANG X, KANG Z X, DAI F N, YUAN D Q, SUN D F, ZHOU H C. Optimizing multivariate metal-organic frameworks for efficient C2H2/CO2 separation[J]. J. Am. Chem. Soc., 2020,142:8728-8737. doi: 10.1021/jacs.0c00805

    28. [28]

      FU X P, WANG Y L, ZHANG X F, ZHANG Z, HE C T, LIU Q Y. Fluorous metal-organic frameworks with unique cage-in-cage structures featuring fluorophilic pore surfaces for efficient C2H2/CO2 separation[J]. CCS Chem., 2022,4:3416-3425. doi: 10.31635/ccschem.021.202101575

    29. [29]

      LIN R B, LI L B, ZHOU H L, WU H, HE C H, LI S, KRISHNA R, LI J P, ZHOU W, CHEN B L. Molecular sieving of ethylene from ethane using a rigid metal-organic framework[J]. Nat. Mater., 2018,17:1128-1133. doi: 10.1038/s41563-018-0206-2

    30. [30]

      GUO P T, YING Y P, CHANG M, LIU D H. One ethane-selective metal-organic framework with customized pore size and specific binding sites for efficient purification of ethylene[J]. Sep. Purif. Technol., 2023,323124465. doi: 10.1016/j.seppur.2023.124465

    31. [31]

      GAO M Y, BEZRUKOV A A, SONG B Q, HE M, NIKKHAH S J, WANG S Q, KUMAR N, DARWISH S, SENSHARMA D, DENG C, LI J, LIU L, KRISHNA R, VANDICHEL M, YANG S, ZAWOROTKO M J. Highly productive C3H4/C3H6 trace separation by a packing polymorph of a layered hybrid ultramicroporous material[J]. J. Am. Chem. Soc., 2023,145:11837-11845. doi: 10.1021/jacs.3c03505

    32. [32]

      YU M H, SPACE B, FRANZ D M, ZHOU W, HE C H, LI L B, KRISHNA R, CHANG Z, LI W, HU T L, BU X H. Enhanced gas uptake in a microporous metal-organic framework via a sorbate induced-fit mechanism[J]. J. Am. Chem. Soc., 2019,141:17703-17712. doi: 10.1021/jacs.9b07807

    33. [33]

      LIAO P Q, HUANG N Y, ZHANG W X, ZHANG J P, CHEN X M. Controlling guest conformation for efficient purification of butadiene[J]. Science, 2017,356:1193-1196. doi: 10.1126/science.aam7232

    34. [34]

      XIE Y, SHI Y S, CUI H, LIN R B, CHEN B L. Efficient separation of propylene from propane in an ultramicroporous cyanide-based compound with open metal sites[J]. Small Struct., 2022,32100125. doi: 10.1002/sstr.202100125

    35. [35]

      GEIER S J, MASON J A, BLOCH E D, QUEEN W L, HUDSON M R, BROWN C M, LONG J R. Selective adsorption of ethylene over ethane and propylene over propane in the metal-organic frameworks M2(dobdc) (M=Mg, Mn, Fe, Co, Ni, Zn)[J]. Chem. Sci., 2013,4:2054-2061. doi: 10.1039/c3sc00032j

    36. [36]

      ZHU H, WANG Y, WANG X, FAN Z W, WANG H F, NIU Z, LANG J P. The design of MOF-based nano-trap for the efficient separation of propane and propylene[J]. Chem. Commun., 2023,59:5757-5760. doi: 10.1039/D3CC01296D

    37. [37]

      WANG Y, HUANG N Y, ZHANG X W, HE H, HUANG R K, YE Z M, LI Y, ZHOU D D, LIAO P Q, CHEN X M, ZHANG J P. Selective aerobic oxidation of a metal-organic framework boosts thermodynamic and kinetic propylene/propane selectivity[J]. Angew. Chem.‒Int. Edit., 2019,58:7692-7696. doi: 10.1002/anie.201902209

    38. [38]

      YOON J W, KIM A R, KIM M J, YOON T U, KIM J H, BAE Y S. Low-temperature Cu(Ⅰ) loading on a mesoporous metal-organic framework for adsorptive separation of C3H6/C3H8 mixtures[J]. Micropor. Mesopor. Mater., 2019,279:271-277. doi: 10.1016/j.micromeso.2018.12.041

    39. [39]

      YU L, HAN X, WANG H, ULLAH S, XIA Q B, LI W Y, LI J N, DA SILVA I, MANUEL P, RUDIC S, CHENG Y Q, YANG S H, THONHAUSER T, LI J. Pore distortion in a metal-organic framework for regulated separation of propane and propylene[J]. J. Am. Chem. Soc., 2021,143:19300-19305. doi: 10.1021/jacs.1c10423

    40. [40]

      TU S, YU L, WU Y, CHEN Y W, WU H X, WANG L Q, LIU B Y, ZHOU X, XIAO J, XIA Q B. A new yttrium-based metal-organic framework for molecular sieving of propane from propylene with high propylene capacity[J]. AICHE J., 2022,6817551. doi: 10.1002/aic.17551

    41. [41]

      MERSMANN A, FILL B, HARTMANN R, MAURER S. The potential of energy saving by gas-phase adsorption processes[J]. Chem. Eng. Technol., 2000,23:937-944. doi: 10.1002/1521-4125(200011)23:11<937::AID-CEAT937>3.0.CO;2-P

    42. [42]

      CHEN F Q, PRASETYO N, SAKAKI S, OTAKE K I, KITAGAWA S. Benchmark paraffin adsorption in a super-hydrophobic porous coordination polymer with blade-like circular phenyl nanotraps[J]. Angew. Chem.‒Int. Edit., 2025,64e202423371. doi: 10.1002/anie.202423371

    43. [43]

      WANG Y, LI T, LI L B, LIN R B, JIA X X, CHANG Z Y, WEN H M, CHEN X M, LI J P. Construction of fluorinated propane-trap in metal-organic frameworks for record polymer-grade propylene production under high humidity conditions[J]. Adv. Mater., 2023,352207955. doi: 10.1002/adma.202207955

    44. [44]

      YU M H, FANG H, HUANG H L, ZHAO M, SU Z Y, NIE H X, CHANG Z, HU T L. Tuning the trade-off between ethane/ethylene selectivity and adsorption capacity within isoreticular microporous metal-organic frameworks by linker fine-fluorination[J]. Small, 2023,192300821. doi: 10.1002/smll.202300821

    45. [45]

      CHEN C X, WEI Z W, PHAM T, LAN P C, ZHANG L, FORREST K A, CHEN S, AL-ENIZI A M, NAFADY A, SU C Y, MA S. Nanospace engineering of metal-organic frameworks through dynamic spacer installation of multifunctionalities for efficient separation of ethane from ethane/ethylene mixtures[J]. Angew. Chem.‒Int. Edit., 2021,60:9680-9685. doi: 10.1002/anie.202100114

    46. [46]

      JIANG S S, LI J Q, FENG M, CHEN R D, GUO L D, XU Q Q, CHEN L H, SHEN F X, ZHANG Z G, YANG Y W, REN Q L, YANG Q W, BAO Z B. Hydrophobic paraffin-selective pillared-layer MOFs for olefin purification[J]. J. Mater. Chem. A, 2022,10:24127-24136. doi: 10.1039/D2TA06783H

    47. [47]

      CHUN H, DYBTSEV D N, KIM H, KIM K. Synthesis, X-ray crystal structures, and gas sorption properties of pillared square grid nets based on paddle-wheel motifs: Implications for hydrogen storage in porous materials[J]. Chem.‒Eur. J., 2005,11:3521-3529. doi: 10.1002/chem.200401201

    48. [48]

      ZHANG P X, YANG L F, LIU X, WANG J, SUO X, CHEN L Y, CUI X L, XING H B. Ultramicroporous material based parallel and extended paraffin nano-trap for benchmark olefin purification[J]. Nat. Commun., 2022,134928. doi: 10.1038/s41467-022-32677-3

    49. [49]

      YANG S Q, SUN F Z, KRISHNA R, ZHANG Q, ZHOU L, ZHANG Y H, HU T L. Propane-trapping ultramicroporous metal-organic framework in the low-pressure area toward the purification of propylene[J]. ACS Appl. Mater. Interfaces, 2021,13:35990-35996. doi: 10.1021/acsami.1c09808

    50. [50]

      CHANG M, REN J H, WEI Y, WANG J X, YANG Q Y, LIU D H, CHEN J F. A robust metal-organic framework with guest molecules induced splint-like pore confinement to construct propane-trap for propylene purification[J]. Sep. Purif. Technol., 2021,279119656. doi: 10.1016/j.seppur.2021.119656

    51. [51]

      YANG L F, CUI X L, DING Q, WANG Q J, JIN A Y, GE L S, XING H B. Polycatenated molecular cage-based propane trap for propylene purification with recorded selectivity[J]. ACS Appl. Mater. Interfaces, 2020,12:2525-2530. doi: 10.1021/acsami.9b19438

    52. [52]

      IACOMI P, FORMALIK F, MARREIROS J, SHANG J, ROGACKA J, MOHMEYER A, BEHRENS P, AMELOOT R, KUCHTA B, LLEWELLYN P L. Role of structural defects in the adsorption and separation of C3 hydrocarbons in Zr-fumarate-MOF (MOF-801)[J]. Chem. Mater., 2019,31:8413-8423. doi: 10.1021/acs.chemmater.9b02322

    53. [53]

      LI X Y, LIU J Q, ZHOU K, ULLAH S, WANG H, ZOU J Z, THONHAUSER T, LI J. Tuning metal-organic framework (MOF) topology by regulating ligand and secondary building unit (SBU) geometry: Structures built on 8-connected M6 (M=Zr, Y) clusters and a flexible tetracarboxylate for propane-selective propane/propylene separation[J]. J. Am. Chem. Soc., 2022,144:21702-21709. doi: 10.1021/jacs.2c09487

    54. [54]

      HE C H, WANG Y, CHEN Y, WANG X Q, YANG J F, LI L B, LI J P. Modification of the pore environment in UiO-type metal-organic framework toward boosting the separation of propane/propylene[J]. Chem. Eng. J., 2020,403126428.

    55. [55]

      HONG A N, YANG H J, LI T, WANG Y, WANG Y X, JIA X X, ZHOU A, KUSUMOPUTRO E, LI J P, BU X H, FENG P Y. Pore-space partition and optimization for propane-selective high‑ performance propane/propylene separation[J]. ACS Appl. Mater. Interfaces, 2021,13:52160-52166. doi: 10.1021/acsami.1c10391

  • 加载中
    1. [1]

      Hongzhe GUOSen WANGLu YANGFucheng LIUJiongpeng ZHAOZhaoquan YAO . Highly selective acetylene capture by a pacs-type metal-organic framework constructed using metal-formate complexes as pore partition units. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2157-2164. doi: 10.11862/CJIC.20250179

    2. [2]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    3. [3]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    4. [4]

      Haoying ZHAILanzong WENWenjie LIAOQin LIWenjun ZHOUKun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320

    5. [5]

      Xinnan XIEBoyu ZHANGJianxun YANGYi ZHONGYounis OsamaJianxiao YANGXinchun YANG . Ultrafine platinum clusters achieved by metal-organic framework derived cobalt nanoparticle/porous carbon: Remarkable catalytic performance in dehydrogenation of ammonia borane. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2095-2102. doi: 10.11862/CJIC.20250025

    6. [6]

      Ruiyan CHENYanping HEJian ZHANG . Synthesis and third-order nonlinear optical property of Ti4L6 cage-based metal-organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2149-2156. doi: 10.11862/CJIC.20250177

    7. [7]

      Yukun CHENKexin FENGBolun ZHANGWentao SONGJianjun ZHANG . Syntheses, crystal structures, and diametrically opposed mechanically-stimulated luminescence response of two Mg(Ⅱ) metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1227-1234. doi: 10.11862/CJIC.20240448

    8. [8]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    9. [9]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    10. [10]

      Min ZHUYuxin WANGXiao LIYaxu XUJunwen ZHUZihao WANGYu ZHUXiaochen HUANGDan XUMonsur Showkot Hossain Abul . Construction of AgVO3/ZIF-8 composites for enhanced degradation of tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 994-1006. doi: 10.11862/CJIC.20240392

    11. [11]

      Ri PENGYingxiang BAIYuxin XIEDunru ZHUcis/trans-Octahedral configuration induced topologically different MOFs: Syntheses, structures, and Hirshfeld surface analyses. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1650-1660. doi: 10.11862/CJIC.20250143

    12. [12]

      Bangdi GEXiaowei SONGZhiqiang LIANG . A bifunctional three-dimensional Eu-MOF fluorescent probe for highly sensitive detection of 2, 4, 6-trinitrophenol and tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2165-2174. doi: 10.11862/CJIC.20250190

    13. [13]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    14. [14]

      Fahui XiangLu LiZhen YuanWuji WeiXiaoqing ZhengShimin ChenYisi YangLiangji ChenZizhu YaoJianwei FuZhangjing ZhangShengchang Xiang . Enhanced C2H2/CO2 separation in tetranuclear Cu(Ⅱ) cluster-based metal-organic frameworks by adjusting divider length of pore space partition. Chinese Chemical Letters, 2025, 36(3): 109672-. doi: 10.1016/j.cclet.2024.109672

    15. [15]

      Xi Feng Ding-Yi Hu Zi-Jun Liang Mu-Yang Zhou Zhi-Shuo Wang Wen-Yu Su Rui-Biao Lin Dong-Dong Zhou Jie-Peng Zhang . A metal azolate framework with small aperture for highly efficient ternary benzene/cyclohexene/cyclohexane separation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100540-100540. doi: 10.1016/j.cjsc.2025.100540

    16. [16]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    17. [17]

      Jiaxuan YANGChenfa DENGJingyang LIUChenzexi XUHongxin CHENYahui ZHUYing LIShuhua WANGRongping ZHOUChao CHEN . Advances in selective hydrogenation of α, β-unsaturated aldehydes/ketones catalyzed by metal-organic frameworks and their derivatives: A review. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1973-2010. doi: 10.11862/CJIC.20250175

    18. [18]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    19. [19]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    20. [20]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

Metrics
  • PDF Downloads(0)
  • Abstract views(31)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return