Citation: Tong WANG, Xuefang ZHU, Qi GAO, Hongbo ZHANG, Chao REN, Lixia GE. Luminescence and thermal stability of Tb3+-Eu3+ doped glass-ceramics containing Na8.12Y1.293Si6O18 crystal phase[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(11): 2237-2250. doi: 10.11862/CJIC.20250137 shu

Luminescence and thermal stability of Tb3+-Eu3+ doped glass-ceramics containing Na8.12Y1.293Si6O18 crystal phase

  • Corresponding author: Hongbo ZHANG, zhb5388460@126.com
  • Received Date: 21 April 2025
    Revised Date: 19 September 2025

Figures(22)

  • A series of Tb3+-Eu3+ doped glass-ceramics containing Na8.12Y1.293Si6O18 were prepared. The influence of heat-treatment conditions on the microstructure and luminescent properties was systematically investigated using various characterization techniques, and the optimal heat-treatment condition for luminescence was determined to be 670 ℃ for 90 min. The optimal doping concentration (molar fraction) of Tb3+ was 0.5%, beyond which concentration quenching occurs primarily due to quadrupole-quadrupole interactions. The energy transfer from Tb3+ to Eu3+ was observed in co-doped glass-ceramics. Within the temperature range of 293-493 K, co-doped glass-ceramic exhibited good fluorescence thermal stability with a thermal quenching activation energy of 0.24 eV and a chromaticity shift of 2.1×10-2. Furthermore, this material demonstrated promising temperature sensing capabilities, with a maximum sensitivity of 5.7×10-3 K-1 and a thermal repeatability ratio of 96.6%.
  • 加载中
    1. [1]

      ZHENG X G, KONG Y Q, WANG G L, WANG Z D, QI X Y, MA Y L. Research progress in phosphor ceramic/glass device for solid-state lighting[J]. Chemistry, 2024, 87(10): 1158-1168

    2. [2]

      YANG L R, LIU M Y, GAO Z X, JIANG B L, ZHOU W B, SHANG F, CHEN G H. Adjustable white-light emission performance of Dy3+/Tm3+ double-doped glass and NaGd(MoO4)2 glass ceramic[J]. Opt. Mater., 2023, 137: 113562  doi: 10.1016/j.optmat.2023.113562

    3. [3]

      HE Z X, GAO Y, REN J, CHEN J B. Effect of concentration of Er3+ on up-conversion luminescence in NaYF4 containing oxy-fluoride glass-ceramics[J]. J. Am. Ceram. Soc., 2024, 107(8): 5482-5489  doi: 10.1111/jace.19817

    4. [4]

      WANG Y H, LIU W Z, WEI Y C, GU Y, TANG N W, LIU Z Y, LI T T, XIAO Z L, YU J B, HAN L. A novel Na2Ca2Si3O9∶Tb3+ glass ceramic with high luminescence efficiency and robust thermal stability for white LED lighting application[J]. Ceram. Int., 2024, 50(22): 45508-45519  doi: 10.1016/j.ceramint.2024.08.389

    5. [5]

      LIU Y K, YANG B B, YU Z Y, WANG Q, ZOU J. Eu3+@Cs4SnBr6 NCs-doped silicate glass with efficient tunable white light emission via energy transfer and multi-emission photoluminescence properties[J]. Mater. Today Chem., 2024, 42: 102387  doi: 10.1016/j.mtchem.2024.102387

    6. [6]

      FU W B, ZHANG C M, LI Z W, XIA J A, PING Y X. Luminescence of Cr3+/Yb3+ co-doped oxyfluoride silicate glasses for crystalline silicon solar cell down-conversion devices[J]. Ceram. Int., 2020, 46(10): 15054-15060  doi: 10.1016/j.ceramint.2020.03.038

    7. [7]

      SUN Y, MA J P, SHAO C Y, WANG X, YU F, LIAO M S, HU L L, KNIGHT J. Photodarkening mechanisms of Pr3+ singly doped and Pr3+/Ce3+ co-doped silicate glasses and fibers[J]. J. Am. Ceram. Soc., 2022, 105: 3291-3302  doi: 10.1111/jace.18318

    8. [8]

      LIAN C F, YE X, KANG S L, GAO C W, XU T F, DAI S X, LIN C G, TAN L L. Broadband NIR emission from Te doped silicate glass as gc-LED light source for biological detection[J]. Ceram. Int., 2024, 50(12): 21318-21323  doi: 10.1016/j.ceramint.2024.03.242

    9. [9]

      ISMAIL M M, MAHDY E A, ABO-MOSALLAM H A. Spectroscopic properties of Ce3+ doped silicate glasses for near-UV white LEDs and blue laser applications[J]. Opt. Mater., 2025, 158: 116411  doi: 10.1016/j.optmat.2024.116411

    10. [10]

      UEDA K, AOKI T, SHIMIZU Y H, MASSUYEAU F, JOBIC S. Luminescence and location of Gd3+ or Tb3+ ions in perovskite-type LaScO3[J]. Inorg. Chem., 2018, 57(15): 8718-8721  doi: 10.1021/acs.inorgchem.8b01288

    11. [11]

      TIAN X Y, GUO L T, WEN J, ZHU L, JI C Y, HUANG Z, LUO F, LIU X, LI J, LI C Y, PENG H X, PENG Y X, ZHOU S Y, LI G W. Thermometric properties of SrMoO4∶Tb3+ phosphor based on redshift of charge transfer band edge[J]. Ceram. Int., 2024, 50(11): 20573-20581  doi: 10.1016/j.ceramint.2024.03.179

    12. [12]

      YU C Y, YANG Z W, QIU J B, SONG Z G, DACHENG Z. Enhanced photoluminescence property and mechanism of Eu3+-doped tellurite glasses by the silver and gold nanoparticles[J]. J. Am. Ceram. Soc., 2018, 101(2): 612-623  doi: 10.1111/jace.15222

    13. [13]

      WANG K, LIU Y, TAN G Q, LIU D H, MA S Y, ZHAO M Z. Structure, luminescence and energy transfer of LiLa(MoO4)2∶Dy3+, Eu3+ crystal[J]. J. Lumin., 2018, 197: 354-359  doi: 10.1016/j.jlumin.2017.12.013

    14. [14]

      LI G W, LIN D Y, ZHENG A Q, LIU Y N, ZHU Z L, CHEN X, ZHAO B. Effect of Nb2O5 mole fraction variation on the properties of tellurium-zinc-barium-niobium glasses[J]. Journal of Fuzhou University (Natural Science Edition), 2020, 48(1): 122-127

    15. [15]

      KLIMESZ B, DOMINIAK-DZIK G, RYBA-ROMANOWSKI W. Thermal and radiative characteristics of oxyfluoride glass singly doped with lanthanide ions[J]. J. Rare Earths, 2010, 28(6): 893-898  doi: 10.1016/S1002-0721(09)60215-5

    16. [16]

      JIA F Y, XU S N, ZHANG G D, ZHAO T L, ZOU X Y, ZHANG H B. Effect of Mg2+/Sr2+ addition on luminescence properties of Dy3+ doped glass ceramics containing Ca2Ti2O6[J]. Opt. Mater., 2022, 131: 112715  doi: 10.1016/j.optmat.2022.112715

    17. [17]

      TOBBENS D M, KAHLENBERG V, KAINDL R, SARTORY B, KONZETT J. Na8.25Y1.25Si6O18 and its family of zwolfer ring silicates[J]. Z. Kristall., 2008, 223(6): 389-398

    18. [18]

      WANG S Y, ZHANG H B, WANG T, LV H M, ZOU X Y, WEI Y L, HU W H, SU C H. Synthesis and luminescence properties of Sm3+ doped molybdate glass ceramic[J]. J. Alloy. Compd., 2020, 823: 153822  doi: 10.1016/j.jallcom.2020.153822

    19. [19]

      ZHONG Y F, SUN P F, GAO X, LIU Q, HUANG S S, LIU B T, DENG B, YU R J. Synthesis and optical properties of new red- emitting SrBi2Ta2O9∶Eu3+ phosphor application for w-LEDs commercially based on InGaN[J]. J. Lumin., 2019, 212: 45-51  doi: 10.1016/j.jlumin.2019.03.057

    20. [20]

      ZHANG X G, ZHANG J L, CHEN Y B, GONG M L. Energy transfer and multicolor tunable emission in single-phase Tb3+, Eu3+ co-doped Sr3La(PO4)3 phosphors[J]. Ceram. Int., 2016, 42(12): 13919-13924  doi: 10.1016/j.ceramint.2016.05.202

    21. [21]

      FANG S Q, LANG T C, HAN T, WANG J Y, YANG J Y, CAO S X, PENG L L, LIU B T, YAKOVLEV A N, KOREPANOV V I. Zero-thermal-quenching of Mn4+ far-red-emitting in LaAlO3 perovskite phosphor via energy compensation of electrons' traps[J]. Chem. Eng. J., 2020, 389: 124297  doi: 10.1016/j.cej.2020.124297

    22. [22]

      CHEN Z J, CAO C Y, ZHENG Y F, ZHANG M, HUANG N H, BAI B H, XIE A. Preparation and thermally enhanced luminescence of Lu2(MoO4)3∶Eu3+ phosphors[J]. J. Funct. Mater., 2023, 5(4): 4196-4201

    23. [23]

      CHEN R, LIU R, WANG P F, LIN H, CHENG Y, WANG Y S. Advances in luminescence thermal enhancement of rare earth activated phosphors[J]. Chinese Journal of Luminescence, 2024, 45(3): 383-398

    24. [24]

      WU Z G, LI Y, LING S K, WANG Y X, HUANG Y H, LIAO S. Synthesis of CaCO3∶Eu3+@K2CO3 red emitting phosphors and their luminescent negative thermal quenching effect[J]. Technology & Development of Chemical Industry, 2021, 50(9): 1-9

    25. [25]

      HUA Y B, XUE J P, YU J S. Design of a novel WLED structure based on the non‑rare‑earth Ca2Y(Nb, Sb)O6∶Mn4+ materials[J]. Ceram. Int., 2021, 47(17): 24296-24305  doi: 10.1016/j.ceramint.2021.05.141

    26. [26]

      ZHANG X J, HUANG L, PAN F J, WU M M, WANG J, CHEN Y, SU Q. Highly thermally stable single-component white-emitting silicate glass for organic-resin-free white-light-emitting diodes[J]. ACS Appl. Mater. Interfaces, 2014, 6(4): 2709-2717  doi: 10.1021/am405228x

    27. [27]

      CHEN G R, LEI R S, HUANG F F, WANG H P, ZHAO S L, XU S Q. Optical temperature sensing behavior of Er3+/Yb3+/Tm3+∶Y2O3 nanoparticles based on thermally and non-thermally coupled levels[J]. Opt. Commun., 2018, 407: 57-62  doi: 10.1016/j.optcom.2017.09.014

    28. [28]

      CHEN D Q, LIU S, WAN Z Y, CHEN Y. A highly sensitive upconverting nano-glass-ceramic-based optical thermometer[J]. J. Alloy. Compd., 2016, 672: 380-385  doi: 10.1016/j.jallcom.2016.02.138

    29. [29]

      KE L, CAI X Y, REN K K, ZHANG Y P. Color tunability and temperature sensing capabilities in Dy3+/Sm3+ co-doped transparent oxyfluoride glass ceramics containing K3YF6 nanocrystals[J]. Ceram. Int., 2024, 50(16): 28281-28289  doi: 10.1016/j.ceramint.2024.05.128

    30. [30]

      SHANG F, CHEN Y, XU J W, YANG T, YANG Y, CHEN G H. Up-conversion luminescence and highly sensing characteristics of Er3+/Yb3+ co-doped borophosphate glass-ceramics[J]. Opt. Commun., 2019, 441: 38-44  doi: 10.1016/j.optcom.2019.02.034

    31. [31]

      LEON‑LUIS S F, RODRÍGUEZ‑MENDOZA U R, LALLA E, LAVÍNA V. Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass[J]. Sensor. Actuat. B‒Chem., 2011, 158(1): 208-213  doi: 10.1016/j.snb.2011.06.005

    32. [32]

      HE D, GUO C F, JIANG S, ZHANG N M, DUAN C K, YIN M, LI T. Optical temperature sensing properties of Yb3+‑Er3+ co‑doped NaLnTiO4 (Ln=Gd, Y) up-conversion phosphors[J]. RSC Adv., 2015, 5: 1385-1390  doi: 10.1039/C4RA11771A

    33. [33]

      WANG Y, GUO N, SHAO B Q, YAO C F, OUYANG R Z, MIAO Y Q. Adjustable photoluminescence of Bi3+ and Eu3+ in solid solution constructed by isostructural end components through composition and excitation-driven strategy[J]. Chem. Eng. J., 2021, 421: 127735  doi: 10.1016/j.cej.2020.127735

  • 加载中
    1. [1]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    2. [2]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    3. [3]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    4. [4]

      Daming Zhang Zhiwei Niu Qiang Jin Zongyuan Chen Zhijun Guo . Eu(III)-硅酸盐胶体的制备与稳定性研究——一个由科研成果转化的放射化学综合实验的设计. University Chemistry, 2025, 40(6): 183-192. doi: 10.12461/PKU.DXHX202408058

    5. [5]

      Xiqing Liang Tian Zhao Jiawei Li Haohui Tan Hai Chen Liyan Zeng . Pentaerythritol’s Journey of Making Friends. University Chemistry, 2025, 40(10): 175-185. doi: 10.12461/PKU.DXHX202412009

    6. [6]

      Huaihao CHENLingwen ZHANGYukun CHENJianjun ZHANG . A water-stable metal-organic framework probe for Al3+/Ga3+/In3+ detection. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2601-2608. doi: 10.11862/CJIC.20250184

    7. [7]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    8. [8]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    9. [9]

      Ruixin XUHongtuo LIChen SHIYanhong YAN . Factors influencing the spectral properties of composite luminescent materials SrTiO3: Eu3+/SrAl2O4: Eu2+, Dy3+. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2307-2316. doi: 10.11862/CJIC.20250055

    10. [10]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    11. [11]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    12. [12]

      Wanting CHENChufei MIAOYan LIUBobi ZHENGXiaoyu ZHENGHan XUJumei TIAN . Syntheses, characterization, and luminescence properties of Yb(Ⅲ)-based one-dimensional chain coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1672-1680. doi: 10.11862/CJIC.20250013

    13. [13]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    14. [14]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    15. [15]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    16. [16]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    17. [17]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    18. [18]

      Xiaojing TianZhichun HuangQingsong ZhangXu WangNing YangNanping Deng . PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking. Acta Physico-Chimica Sinica, 2024, 40(4): 2304037-0. doi: 10.3866/PKU.WHXB202304037

    19. [19]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    20. [20]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

Metrics
  • PDF Downloads(0)
  • Abstract views(335)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return