Citation: Yachao HUANG, Chuanwang ZENG, Guiyong LIU, Jinming ZENG, Chao LIU, Xiaopeng QI. Oxygen vacancies and phosphorus doping enhanced metal-organic framework derived nitrogen-doped carbon-coated Co3O4 bifunctional electrocatalyst[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(11): 2251-2260. doi: 10.11862/CJIC.20250133 shu

Oxygen vacancies and phosphorus doping enhanced metal-organic framework derived nitrogen-doped carbon-coated Co3O4 bifunctional electrocatalyst

  • Corresponding author: Xiaopeng QI, qxpai@163.com
  • Received Date: 19 April 2025
    Revised Date: 19 September 2025

Figures(7)

  • Using ZIF-67 as the precursor, nitrogen doped carbon coated Co3O4 nanomaterials were first obtained through high-temperature carbonization and low-temperature air oxidation. Then, by introducing oxygen vacancies (Ov) and phosphorus doping, a dual functional electrocatalyst (Ov-Co3O4/NC-P) with high performance and stability was prepared. Electrochemical test results showed that the prepared Ov-Co3O4/NC-P-50 catalyst had an oxygen evolution overpotential of only 281 mV at a current density of 10 mA·cm-2, and the structure of the material remained relatively intact after the stability test, indicating good stability. The half-wave potential in the oxygen reduction reaction process was 0.813 V, and the assembled Ov-Co3O4/NC-P-50 rechargeable zinc-air battery also had a high-power density (155.02 mW·cm-2), and it could cycle 2 880 times (480 h) during the long-term charge- discharge test.
  • 加载中
    1. [1]

      LU Q, WU H, ZHENG X R, CHEN Y N, ROGACH A L, HAN X P, DENG Y D, HU W B. Encapsulating cobalt nanoparticles in interconnected N-doped hollow carbon nanofibers with enriched Co-N-C moiety for enhanced oxygen electrocatalysis in Zn-air batteries[J]. Adv. Sci., 2021, 8(20): 2101438  doi: 10.1002/advs.202101438

    2. [2]

      ZHANG F, ZU B F, WANG B W, QIN Z K, YAO J Q, WANG Z X, FAN L H, JIAO K. Developing long-durability proton-exchange membrane fuel cells[J]. Joule, 2025, 9(3): 101853  doi: 10.1016/j.joule.2025.101853

    3. [3]

      HORRI B A, OZCAN H. Green hydrogen production by water electrolysis: Current status and challenges[J]. Curr. Opin. Green Sustain. Chem., 2024, 47: 100932  doi: 10.1016/j.cogsc.2024.100932

    4. [4]

      LI G, KUJAWSKI W, RYNKOWSKA E. Advancements in proton exchange membranes for high-performance high-temperature proton exchange membrane fuel cells (HT-PEMFC)[J]. Rev. Chem. Eng., 2022, 38(3): 327-346  doi: 10.1515/revce-2019-0079

    5. [5]

      ZHOU C H, ZHAO S M, MENG H B, HAN Y, JIANG Q Y, WANG B S, SHI X F, ZHANG W S, ZHANG L, ZHANG R F. RuCoOx nanofoam as a high-performance trifunctional electrocatalyst for rechargeable zinc-air batteries and water splitting[J]. Nano Lett., 2021, 21(22): 9633-9641  doi: 10.1021/acs.nanolett.1c03407

    6. [6]

      YU J M, LE T A, TRAN N Q, LEE H. Earth-abundant transition-metal-based bifunctional electrocatalysts for overall water splitting in alkaline media[J]. Chem. ‒Eur. J., 2020, 26(29): 6423-6436  doi: 10.1002/chem.202000209

    7. [7]

      ZHANG Y N, SHI W P, BO L L, SHEN Y X, JI X C, XIA L C, GUAN X L, WANG Y X, TONG J H. Electrospinning construction of heterostructural Co3W3C/CoP nanoparticles embedded in N, P-doped hierarchically porous carbon fibers as excellent multifunctional electrocatalyst for Zn-air batteries and water splitting[J]. Chem. Eng. J., 2022, 431: 134188  doi: 10.1016/j.cej.2021.134188

    8. [8]

      CUI Z B, JIAO W S, HUANG Z Y, CHEN G Z, ZHANG B, HAN Y H, HUANG W. Design and synthesis of noble metal-based alloy electrocatalysts and their application in hydrogen evolution reaction[J]. Small, 2023, 19(35): 2301465  doi: 10.1002/smll.202301465

    9. [9]

      HASEEB H, IQBAL N, NOOR T, ZAHRA J, MEHEK R. Design and synthesis of low Pt-loaded Mn-ZIF-67 derived bifunctional electrocatalyst for oxygen electrode in metal-air batteries[J]. J. Mater. Sci., 2025, 60(19): 7872-7887  doi: 10.1007/s10853-025-10919-1

    10. [10]

      LIU G Y, HONG N H, ZENG C W, LAI J J, ZENG J M, LIU C, QI X P. Effect of oxygen vacancy defect introduction method on oxygen evolution performance of Co3O4 based electrocatalyst[J]. Acta Materiae Compositae Sinica, 2025, 44: 1-11

    11. [11]

      YAN Y T, WANG P C, LIN J H, CAO J, QI J L. Modification strategies on transition metal-based electrocatalysts for efficient water splitting[J]. J. Energy Chem., 2021, 58: 446-462  doi: 10.1016/j.jechem.2020.10.010

    12. [12]

      HOU Y, LI J Y, WEN Z H, CUI S M, YUAN C, CHEN J H. Co3O4 nanoparticles embedded in nitrogen-doped porous carbon dodecahedrons with enhanced electrochemical properties for lithium storage and water splitting[J]. Nano Energy, 2015, 12: 1-8  doi: 10.1016/j.nanoen.2014.11.043

    13. [13]

      WANG X, LIAO Z Q, FU Y B, NEUMANN C, TURCHANIN A, NAM G, ZSCHECH E, CHO J, ZHANG J, FENG X L. Confined growth of porous nitrogen-doped cobalt oxide nanoarrays as bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries[J]. Energy Storage Mater., 2020, 26: 157-164  doi: 10.1016/j.ensm.2019.12.043

    14. [14]

      PENG S J, GONG F, LI L L, YU D S, JI D X, ZHANG T R, HU Z, ZHNAG Z Q, CHOU S L, DU Y H, RAMAKRISHNA S. Necklace-like multishelled hollow spinel oxides with oxygen vacancies for efficient water electrolysis[J]. J. Am. Chem. Soc., 2018, 140(42): 13644-13653  doi: 10.1021/jacs.8b05134

    15. [15]

      HE Z Y, ZHANG J, GONG Z H, LEI H, ZHOU D, ZHANG N, MAI W J, ZHAO S J, CHEN Y. Activating lattice oxygen in NiFe-based (oxy)hydroxide for water electrolysis[J]. Nat. Commun., 2022, 13(1): 2191  doi: 10.1038/s41467-022-29875-4

    16. [16]

      TIAN Y H, LIU X Z, XU L, YUAN D, DOU Y H, QIU J X, LI H N, MA J M, WANG Y, SU D, ZAHNG S Q. Engineering crystallinity and oxygen vacancies of Co(Ⅱ) oxide nanosheets for high performance and robust rechargeable Zn-air batteries[J]. Adv. Funct. Mater., 2021, 31(20): 2101239  doi: 10.1002/adfm.202101239

    17. [17]

      YU M Q, BUDIYANTO E, TUYSUZ H. Principles of water electrolysis and recent progress in cobalt-, nickel-, and iron-based oxides for the oxygen evolution reaction[J]. Angew. Chem. ‒Int. Edit., 2022, 61(1): e202103824  doi: 10.1002/anie.202103824

    18. [18]

      ZENG C W, LI X X, ZENG J M, LIU C, LAI J J, QI X P. Synergistic enhancement of catalytic water electrolysis performance of iron‑ cobalt-based materials by oxygen vacancies and phosphorus doping[J]. Chinese J. Inorg. Chem., 2023, 39(2): 202-210  doi: 10.11862/CJIC.2023.006

    19. [19]

      CHEN C F, KING G, DICKERSON R M, PAPIN P A, GUPTA S, KELLOGG W R, WU G. Oxygen-deficient BaTiO3-x perovskite as an efficient bifunctional oxygen electrocatalyst[J]. Nano Energy, 2015, 13: 423-432  doi: 10.1016/j.nanoen.2015.03.005

    20. [20]

      LIU W F, YANG Y L, FENG Y L, ZHNAG Y, LIU Y Q, FENG Y M, ZHANG L. Oxygen vacancy concentration effect on Co3O4 for high-quality energy storage[J]. ACS Appl. Nano Mater., 2025, 8(10): 5068-5077  doi: 10.1021/acsanm.4c07014

    21. [21]

      LI P, WANG Y H, DU X Q, ZHANG X S. Promoted electrocatalytic water splitting by regulating the concentration of oxygen vacancies[J]. Int. J. Hydrog. Energy, 2023, 48(89): 34783-34793  doi: 10.1016/j.ijhydene.2023.05.289

    22. [22]

      LI X X, LIU X C, LIU C, ZENG J M, QI X P. Co3O4/stainless steel catalyst with synergistic effect of oxygen vacancies and phosphorus doping for overall water splitting[J]. Tungsten, 2023, 5(1): 100-108  doi: 10.1007/s42864-022-00144-7

    23. [23]

      XIAO Z H, WANG Y, HUANG Y C, WEI Z X, DONG C L, MA J M, SEHN S H, LI Y F, WANG S Y. Filling the oxygen vacancies in Co3O4 with phosphorus: An ultra-efficient electrocatalyst for overall water splitting[J]. Energy Environ. Sci., 2017, 10(12): 2563-2569  doi: 10.1039/C7EE01917C

    24. [24]

      XIAO K, WANG Y F, WU P Y, HOU L P, LIU Z Q. Activating lattice oxygen in spinel ZnCo2O4 through filling oxygen vacancies with fluorine for electrocatalytic oxygen evolution[J]. Angew. Chem. ‒Int. Edit., 2023, 62(24): e202301408  doi: 10.1002/anie.202301408

    25. [25]

      LUO Z Q, LIM S H, TIAN Z Q, SHANG J Z, LAI L F, MACDONALD B, FU C, SHEN Z X, YU T, LIN J Y. Pyridinic N doped graphene: Synthesis, electronic structure, and electrocatalytic property[J]. J. Mater. Chem., 2011, 21(22): 8038-8044  doi: 10.1039/c1jm10845j

    26. [26]

      NIWA H, HORIBA K, HARADA Y, OSHIMA M, IKEDA T, TERAKURA K, OZAKI J, MIYATA S. X-ray absorption analysis of nitrogen contribution to oxygen reduction reaction in carbon alloy cathode catalysts for polymer electrolyte fuel cells[J]. J. Power Sources, 2009, 187(1): 93-97  doi: 10.1016/j.jpowsour.2008.10.064

    27. [27]

      ZHU C, ZHU M M, SUN Y, ZHOU Y J, GAO J, HUANG H, LIU Y, KANG Z H. Carbon-supported oxygen vacancy-rich Co3O4 for robust photocatalytic H2O2 production via coupled water oxidation and oxygen reduction reaction[J]. ACS Appl. Energy Mater., 2019, 2(12): 8737-8746  doi: 10.1021/acsaem.9b01712

    28. [28]

      ZHANG K, ZHANG G, QU J H, LIU H J. Disordering the atomic structure of Co(Ⅱ) oxide via B-doping: An efficient oxygen vacancy introduction approach for high oxygen evolution reaction electrocatalysts[J]. Small, 2018, 14(41): 1802760  doi: 10.1002/smll.201802760

  • 加载中
    1. [1]

      Shiqian WEIXinyu TIANHong LIUMaoxia CHENFan TANGQiang FANWeifeng FANYu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102

    2. [2]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    3. [3]

      Deyun MaFenglan LiangQingquan XueYanping LiuChunqiang ZhuangShijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190

    4. [4]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    5. [5]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    6. [6]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    7. [7]

      Ruige ZHANGZhe ZHANGHe ZHENGZhan SHI . Recent advances of metal-organic frameworks for alkaline electrocatalytic oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2011-2028. doi: 10.11862/CJIC.20250185

    8. [8]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    9. [9]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    10. [10]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    11. [11]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    12. [12]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    13. [13]

      Hailang JIAYujie LUPengcheng JI . Preparation and properties of nitrogen and phosphorus co-doped graphene carbon aerogel supported ruthenium electrocatalyst for hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2327-2336. doi: 10.11862/CJIC.20250021

    14. [14]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    15. [15]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    16. [16]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    17. [17]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-0. doi: 10.3866/PKU.WHXB202404023

    18. [18]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    19. [19]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004

    20. [20]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

Metrics
  • PDF Downloads(0)
  • Abstract views(329)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return