Citation: Lin LI, Le CHEN, Lingjie HOU, Jiaqi JING, Jiayu DING, Tao ZHOU, Ruiping ZHANG. Smartphone-assisted fluorescent silver nanoclusters as ratiometric sensor for visual colorimetric detection of sulfide[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(11): 2261-2271. doi: 10.11862/CJIC.20250130 shu

Smartphone-assisted fluorescent silver nanoclusters as ratiometric sensor for visual colorimetric detection of sulfide

Figures(7)

  • Based on the aggregation-induced self-assembly strategy, the ratiometric red fluorescent silver nanoclusters (PEI/PVP-AgNCs) were developed by employing a one-pot low-heat reaction with silver nitrate (AgNO3), which used the complex as ligands that formed by hydrogen-binding between polyethyleneimine (PEI) and polyethylpyrrolidone (PVP) with abundant amine group and carbonyl group, and 2-mercaptobenzothiazole (MBT) as the aggregation inductive agent. The optical properties and structural morphology of PEI/PVP-AgNCs were characterized. It was found that upon the excitation at 365 nm, PEI/PVP-AgNCs exhibits two fluorescence emission peaks centered at 435 and 610 nm, respectively. Besides, it revealed that the morphology of PEI/PVP-AgNCs was quasi-spherical with an average diameter of 2.0 nm. Interestingly, the fluorescence at 610 nm of PEI/PVP-AgNCs could be effectively quenched with the addition of S2-, owing to the formation of Ag2S between the soft base S2- and the soft acid Ag+ based on the "soft affinity soft" binding principle of the hard-soft-acid-base theory, while no significant change at 435 nm due to the PEI/PVP complex does not react with S2-, thus the fluorescence at 610 nm (F610) can be used as a response signal and the fluorescence at 435 nm (F435) as a reference signal. Based on the above response signal and reference signal, the high selectivity and sensitivity detection of S2- can be achieved by utilizing the fluorescence intensity ratio (F435/F610) of PEI/PVP-AgNCs, which expanded the detection range from 50-350 nmol·L-1 and 720-920 nmol·L-1 with a sensitive detection limit of 1.1 nmol·L-1. From this, PEI/PVP-AgNCs was designed as a paper-based sensor, and it was found that the fluorescence color changed from red to blue under ultraviolet lamp after the S2- interacted with PEI/PVP-AgNCs test strips through the analysis of photos taken with a smartphone, thus the visual colorimetric fluorescence detection of S2- can be realized. Based on the established method, the PEI/PVP-AgNCs were successfully applied to the quantification of S2- content in actual water samples with the recoveries of 98.91%-102.24% and obtained satisfying results. The results show that the ratiometric fluorescent silver nanosensor can be applied to assess environmental water contamination.
  • 加载中
    1. [1]

      WEI H B, QIU H J, LIU J, LI W, ZHAO C C, XU H F. Evaluation and source identification of water pollution[J]. Ecotox. Environ. Safe., 2025, 289: 117499  doi: 10.1016/j.ecoenv.2024.117499

    2. [2]

      WANG C, LI W H, WANG X H, XIANG D S, ZHAI K. Highly sensitive detection of sulfur ion in water by four-color fluorescence based on Cu-containing metal-organic framework[J]. Luminescence, 2024, 39: e4916  doi: 10.1002/bio.4916

    3. [3]

      AN Y, LI L Y, LI L P, SUN Y Q, LI B, WANG P. Peptide-based probe for colorimetric and fluorescent detection of Cu2+ and S2- in environmental and biological systems[J]. J. Hazard. Mater., 2024, 465: 133192  doi: 10.1016/j.jhazmat.2023.133192

    4. [4]

      CÓRDOVA-MORENO R, ROTH S, RÍOS C. P1E108-neurotoxic effect of Na2S, a soluble salt of hydrogen sulphide, on striatal slices of rat brain[J]. Toxicol. Lett., 1998, 95: 63

    5. [5]

      PAUL B D, PIEPER A A. Neuroprotective signaling by hydrogen sulfide and its dysregulation in Alzheimer′s disease[J]. Curr. Opin. Chem. Biol., 2024, 82: 102511  doi: 10.1016/j.cbpa.2024.102511

    6. [6]

      CARTER R N, GIBBINS M T G, BARRIOS-LLERENA M E, WILKIE S E, FREDDOLINO P L, LIBIAD M, VITVITSKY V, EMERSON B, BIHAN T L, BRICE M, SU H Z, DENHAM S G, HOMER N Z M, FADDEN C M, TAILLEUX A, FARESSE N, SULPICE T, BRIAND F, GILLINGWATER T, AHN K H, MORTON N M. The hepatic compensatory response to elevated systemic sulfide promotes diabetes[J]. Cell Rep., 2021, 37(6): 109958  doi: 10.1016/j.celrep.2021.109958

    7. [7]

      ZHANG H L, YANG X J, LI J, LI Q, ZHANG F J, ZHANG Y L, WANG H B, YANG W R, PANG P F. Fluorescent probe for detection of Hg2+ and S2- based on N-doped Ti3C2 MXene quantum dots[J]. Chem. J. Chinese Universities, 2024, 45(5): 20230504

    8. [8]

      MOREIRA B M, LIMA A P, MUNOZ R A A, PETRUCI J F S. An indirect electrochemical method for aqueous sulfide determination in freshwaters using a palladium chelate as a selective sensor[J]. Talanta, 2021, 231: 122413  doi: 10.1016/j.talanta.2021.122413

    9. [9]

      COLON M, TODOLÍ J L, HIDALGO M, IGLESIAS M. Development of novel and sensitive methods for the determination of sulfide in aqueous samples by hydrogen sulfide generation-inductively coupled plasma-atomic emission spectroscopy[J]. Anal. Chim. Acta, 2008, 609: 160-168  doi: 10.1016/j.aca.2008.01.001

    10. [10]

      ZGAGACZ W, ZAKRZEWSKI R, URBANIAK K, CHWATKO G, NOWICKI A. The use of high-performance liquid chromatography with diode array detector for the determination of sulfide ions in human urine samples using pyrylium salts[J]. J. Chromatogr. B, 2020, 1157: 122309

    11. [11]

      ZHANG P, XU X, CUI Y F, WEI X H, MENG S J, SUN Y X. A highly sensitive and selective bissalamo-coumarin-based fluorescent chemical sensor for Cr3+/Al3+ recognition and continuous recognition S2-[J]. J. Photochem. Photobiol. A, 2021, 408: 113066  doi: 10.1016/j.jphotochem.2020.113066

    12. [12]

      XU D P, ZHENG Y N, XIE B M, ZHANG Y Q, TONG Z F, SUN J H, SUN L X, ZHOU G Z, LIAO D K. High sensitive and discriminating colorimetric assay for S2- overload in adaptogenic herbs utilizing ZnS nanoparticle-enhanced S, N-doped eggshell membrane-derived biochar[J]. Anal. Chim. Acta, 2025, 1333: 343391

    13. [13]

      LUO Q, DING N, CHEN H X, ZHANG Y Q, ZHANG M, GAO W L, LI Y H, FENG K J, SHI X B. A novel "mix-response" biosensor for colorimetric and photothermal dual-mode detection of sulfide ions in food based on silver-doping Prussian blue nanoparticle[J]. Talanta, 2024, 279: 126493  doi: 10.1016/j.talanta.2024.126493

    14. [14]

      QU Y, CHEN T, XU Y H. Selective and smart dual-channel colorimetric sulfur ion sensing readout platform[J]. Sens. Actuator B‒Chem., 2023, 392: 134060  doi: 10.1016/j.snb.2023.134060

    15. [15]

      CHEN L, LI L, YAN Y X, WU W X, SONG Z R, FENG Q Q. Ratiometric fluorescent detection of sulfide ions in radix codonopsis and living cells based on PVP-supported gold/copper nanoclusters with tunable dual emission[J]. Spectroc. Acta Pt. A‒Molec. Biomolec. Spectr., 2023, 284: 121783  doi: 10.1016/j.saa.2022.121783

    16. [16]

      ZHANG B W, WANG Y, WANG Y H, HUO F, KARMAKER P G, CHEN L F, YANG X P, ZHAO B. Chameleon-like response mechanism of gold-silver bimetallic nanoclusters stimulated by sulfur ions and their application in visual fluorescence sensing[J]. Anal. Chem., 2024, 96: 5029-5036  doi: 10.1021/acs.analchem.4c00396

    17. [17]

      HE R L, HU F, GUAN Z J, WANG Q M. Large scale synthesis of a stable prefunctionalized silver nanocluster[J]. Angew. Chem. ‒Int. Edit., 2024, 63(40): e202410827  doi: 10.1002/anie.202410827

    18. [18]

      KSHATRIYA V V, KUMBHARE M R, JADHAV S V, THORAT P J. Updated review on recent advances in silver nanoclusters in bioanalytical and biomedical applications[J]. BIOI., 2024, 5(1): 1-13

    19. [19]

      XU J X, RAMASAMY M, TANG T, WANG Y, ZHAO W N, TAM K C. Synthesis of silver nanoclusters in colloidal scaffold for biolabeling and antimicrobial applications[J]. J. Colloid Interface Sci., 2022, 623: 883-896  doi: 10.1016/j.jcis.2022.05.084

    20. [20]

      SASIKUMAR T, ILANCHELIAN M. Facile preparation of dihydrolipoic acid-stabilized red-emitting silver nanoclusters as a sensitive fluorometric probe for sulfide ions detection[J]. Spectroc. Acta Pt. A‒Molec. Biomolec. Spectr., 2023, 302: 123034  doi: 10.1016/j.saa.2023.123034

    21. [21]

      VILLARINO N, LAVILLA I, PENA-PEREIRA F, BENDICHO C. Silver nanocluster-based colorimetric/fluorimetric dual-mode sensor for the detection of bromide and sulfite in waters and wastewaters[J]. Microchem. J., 2024, 196: 109685  doi: 10.1016/j.microc.2023.109685

    22. [22]

      NEJAD M A F, BIGDELI A, HORMOZI-NEZHAD M R. Wide color-varying visualization of sulfide with a dual emissive ratiometric fluorescence assay using carbon dots and gold nanoclusters[J]. Microchem. J., 2020, 157: 104960  doi: 10.1016/j.microc.2020.104960

    23. [23]

      QIN L F, ZHANG K W, FENG B, ZHANG P, QING T P, FEI J J. Proximity sequence-dependent spectral conversion of silver nanoclusters and construction of ratiometric nanoprobe[J]. Chem. Eng. J., 2022, 441: 136001  doi: 10.1016/j.cej.2022.136001

    24. [24]

      YIN C H, LIU T, MENG W, LIU H C, SUN Q J, SUN X, NIU N, CHEN L G. Smartphone-integrated dual-emission fluorescence sensing platform based on carbon dots and aluminum ions-triggered aggregation-induced emission of copper nanoclusters for on-site visual detecting sulfur ions[J]. Anal. Chim. Acta, 2022, 1232: 340460

    25. [25]

      HUANG X N, SHAHZAD S A, LI Y X, ZHANG Y Y, SANG L J, ZHOU H P, JIANG H, LO K K W, YU C. Silver nanoclusters capped silica nanoparticles as a ratiometric photoluminescence nanosensor for the selective detection of I- and S2-[J]. Anal. Chim. Acta, 2017, 988: 74-80  doi: 10.1016/j.aca.2017.07.056

    26. [26]

      LI L, CHEN J, JIN R C, YAN Y X, SONG Z R, WANG J W, WANG X Y, ZHANG Q Y, ZHANG C F. 2-Mercaptobenzothiazole-supported ratiometric fluorescent copper nanoclusters for activatable GSH sensing to drive tumor recognition[J]. Colloid Surf. B‒Biointerfaces, 2022, 217: 112698  doi: 10.1016/j.colsurfb.2022.112698

    27. [27]

      LI Q, GUO Y M, GAO Y, LI G L. Polyethyleneimine-protected silver cluster for label-free and highly selective detection of 2, 4, 6-trinitrotoluene[J]. Spectroc. Acta Pt. A‒Molec. Biomolec. Spectr., 2022, 276: 121224  doi: 10.1016/j.saa.2022.121224

    28. [28]

      RAJA D A, SHAH M R, MALIK M I. Polyethyleneimine stabilized silver nanoparticles as an efficient and selective colorimetric assay for promethazine[J]. Anal. Chim. Acta, 2022, 1223: 340216

    29. [29]

      REN J, WU W X, CHEN T Y, GUO H Y, XU C L, MA J, WANG L N, WANG J F, LI L. Polyethylenimine-protected green-emission copper nanoclusters as highly effective fluorescent and colorimetric nanoprobe for selective cobalt ions and temperature sensing[J]. Spectroc. Acta Pt. A‒Molec. Biomolec. Spectr., 2024, 304: 123438  doi: 10.1016/j.saa.2023.123438

    30. [30]

      LI L, WANG J W, HUO Y J, SUN C F, ZHANG H Y, ZHANG C F. Preparation of polyvinylpyrrolidone-protected fluorescent copper nanoclusters for rapid and accurate detection of ethanol[J]. Chinese J. Inorg. Chem., 2021, 37(12): 2113-2124  doi: 10.11862/CJIC.2021.258

    31. [31]

      VINODHINI J, HARISH S, IKEDA H, NAVANEETHAN M. Flexible Ag2Se/Ag2S nanocomposite on carbon fabric optimized via interfaced engineered energy filtering effect for a textile based wearable thermoelectric generator[J]. Surf. Interfaces, 2024, 54: 105105  doi: 10.1016/j.surfin.2024.105105

  • 加载中
    1. [1]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    2. [2]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    3. [3]

      Hongmei Chai Yixia Ren Xiangyang Hou Long Tang Jiawei Xie . 智能手机光传感的“丙酮碘化反应”实验改进. University Chemistry, 2025, 40(6): 193-200. doi: 10.12461/PKU.DXHX202407086

    4. [4]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    5. [5]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    6. [6]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046

    7. [7]

      Chengyan GeJiawei HuXingyu LiuYuxi SongChao LiuZhigang Zou . Self-integrated black NiO clusters with ZnIn2S4 microspheres for photothermal-assisted hydrogen evolution by S-scheme electron transfer mechanism. Acta Physico-Chimica Sinica, 2026, 42(1): 100154-0. doi: 10.1016/j.actphy.2025.100154

    8. [8]

      Xiaohang JINQi LIUJianping LANG . Room‑temperature solid‑state synthesis, structure, and third‑order nonlinear optical properties of phosphine‑ligand‑protected silver thiolate clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1505-1512. doi: 10.11862/CJIC.20250125

    9. [9]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    10. [10]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    11. [11]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    12. [12]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    13. [13]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    14. [14]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    15. [15]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    16. [16]

      Wenhui Li Changshuo Zhu Xinyu Cui Chenfei Zhao Lina Qiu Yan Li Chuandong Wu Min Yang Yuan Zhuang . Visual Determination of Acid-Base Titration Endpoints Using Smartphone APP-Based Analysis. University Chemistry, 2025, 40(7): 328-335. doi: 10.12461/PKU.DXHX202409062

    17. [17]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    18. [18]

      Yingpeng ZHANGXingxing LIYunshang YANGZhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064

    19. [19]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    20. [20]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

Metrics
  • PDF Downloads(0)
  • Abstract views(336)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return