Citation: Dan PENG, Hao WANG, Yanyan WANG, Hongpeng YOU, Wuping LIAO. Synthesis and fluorescent properties of a one-dimensional Tb-calixarene complex as a luminescent thermometer material[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(9): 1859-1866. doi: 10.11862/CJIC.20250128 shu

Synthesis and fluorescent properties of a one-dimensional Tb-calixarene complex as a luminescent thermometer material

  • Corresponding author: Wuping LIAO, wpliao@gia.cas.cn
  • Received Date: 15 April 2025
    Revised Date: 22 June 2025

Figures(6)

  • Luminescence thermometry has attracted more and more attention due to its non-contact and noninvasive operation, fast response, high spatial resolution, and so on, for which the luminescent thermometers are the key. Here, a 1D complex [Tb4(HTC4A)(TC4A)(OBBA)2(CH3OH)4(μ4-OH)]n (1) was obtained by solvothermal synthesis, where H4TC4A=p-tert-butylthiacalix[4]arene, and H2OBBA=4, 4′-oxybisbenzoic acid. This complex is featured with a chain-like polymer constructed by bridging some sandwich-like Tb4-(TC4A)2 entities through OBBA2- ligands. It exhibited the characteristic emission of the Tb3+ ion. Both fluorescence intensity and lifetime decreased with increasing temperature. The relative sensitivity was up to 8.743%·K-1 at 473 K, indicating it is a good ratiometric luminescent thermometer. This complex had good stability under different pH values and in common solvents.
  • 加载中
    1. [1]

      CAI L, KHANPOUR M, YIN Q, WANG Z Y, FANG Z B, LIU H X, HOU Y, LIU C, DENG W Z, LIU T F. Well-defined microenvironment in metal-organic frameworks enable green, benign, and isolation-free catalytic oxidation reaction[J]. CCS Chem., 2025, 7(8): 2465-2474  doi: 10.31635/ccschem.024.202404630

    2. [2]

      ZAREKARIZI F, GHASEMPOUR H, HABIBI B, MORSALI A, RAMAZANI A. Development of a novel mixed-metal-organic framework: An innovative photocatalyst for simultaneous Cr(Ⅵ) reduction and phenol degradation[J]. Inorg. Chem., 2024, 63(51): 24363-24373  doi: 10.1021/acs.inorgchem.4c04447

    3. [3]

      KANZARIYA D B, CHAUDHARY M Y, PAL T K. Engineering of metal-organic frameworks (MOFs) for thermometry[J]. Dalton Trans., 2023, 52(22): 7383-7404  doi: 10.1039/D3DT01048A

    4. [4]

      LI Z J, WANG Q, YU K L, CUI W L, HE Y B, CHEN B L, ZHAO D. A multimodal ratiometric luminescent thermometer based on a single-dysprosium meta-organic framework[J]. Inorg. Chem., 2023, 62(14): 5652-5659  doi: 10.1021/acs.inorgchem.3c00194

    5. [5]

      MASANORI Y, YUICHI K, TAKAYUKI N, KOJI F, YASUCHIKA H. Ligand-assisted back energy transfer in luminescent Tb complexes for thermosensing properties[J]. Chem. –Eur. J., 2018, 24(67): 17719-17726  doi: 10.1002/chem.201804392

    6. [6]

      ZHAO D, RAO X T, YU J C, CUI Y J, YANG Y, QIAN G D. Design and synthesis of an MOF thermometer with high sensitivity in the physiological temperature range[J]. Inorg. Chem., 2015, 54(23): 11193-11199  doi: 10.1021/acs.inorgchem.5b01623

    7. [7]

      GUAN H R, QI M X, SHI L F, LIU W S, YANG L Z, DOU W. Ratiometric luminescent thermometer based on the lanthanide metal-organic frameworks by thermal curing[J]. ACS Appl. Mater. Interfaces, 2023, 15(14): 18114-18124  doi: 10.1021/acsami.3c01897

    8. [8]

      HE T, LI X Z, DIAO X H, MUHAMMAD Y, CHEN C, WANG H, LI W, QI C S. Fabrication of dual-emission guest@MOF-808 films for self-calibrating temperature sensing[J]. Inorg. Chem. Commun., 2024, 170: 113342  doi: 10.1016/j.inoche.2024.113342

    9. [9]

      WANG Y Y, ZHENG H Y, ZHANG G S, WANG H, XIONG Y, LIAO W P. Solvent-polarity-induced assembly of calixarene-capped titanium-oxo clusters with catalytic activity in the oxygenation of sulfides[J]. Eur. J. Inorg. Chem., 2023, 26(8): e202200677  doi: 10.1002/ejic.202200677

    10. [10]

      LIU J Y, SHENG T P, LI C, WANG Z Q, DAI F R, CHEN Z N. Iodine adsorption via porous molecular solids based on coordination containers derived from naphthalene-1, 8-dicarboxylate[J]. Cryst. Growth Des., 2022, 22(5): 3182-3189  doi: 10.1021/acs.cgd.2c00039

    11. [11]

      HAN H T, DING Y S, ZHU X F, HAN T, ZHENG Y Z, LIAO W P. Constructing [Co6] hexagon-centered heterometallic {Ln6Co6} (Ln=Y, Eu and Dy) clusters with a calix[8]arene ligand[J]. Inorg. Chem. Front., 2020, 7(21): 4070-4076  doi: 10.1039/D0QI00792G

    12. [12]

      TAKASHI K, KENSUKE K, MIKI H, AYUMI I, MARILENA F, SHINYA T, TASUKU I, MASAHIRO Y, NOBUHIKO I. Conformation-controlled luminescent properties of lanthanide clusters containing p-tert-butylsulfonylcalix[4]arene[J]. Inorg. Chem., 2006, 45(13): 4880-4882  doi: 10.1021/ic060397t

    13. [13]

      LU Z X, WANG S J, ZHUO Z, LI G L, ZHU H M, WANG W, HUANG Y G, HONG M C. Achieving stable photoluminescence by double thiacalix[4]arene-capping: The lanthanide-oxo cluster core matters[J]. RSC Adv., 2022, 12(45): 29151-29161  doi: 10.1039/D2RA04942B

    14. [14]

      SU K Z, JIANG F L, QIAN J J, PANG J D, SHAEEL A. A T, SALEM M. B, MOHAMED M, CHEN Q H, HONG M C. Alkali-metal-templated assembly of two high-nuclearity cobalt clusters based on thiacalix[4]arene[J]. Cryst. Growth Des., 2014, 14(11): 5865-5870  doi: 10.1021/cg5010903

    15. [15]

      SUN C Z, ZHANG L Y, WANG J Y, CHEN Z N, DAI F R. Sensitive and selective urinary 1-hydroxypyrene detection by dinuclear terbium-sulfonylcalixarene complex[J]. Dalton Trans., 2018, 47(25): 8301-8306  doi: 10.1039/C8DT01604F

    16. [16]

      IKI N, KABUTO C, FUKUSHIMA T, KUMAGAI H, TAKEYA H, MIYANARI S, MIYASHI T, MIYANO S. Synthesis of p-tert-butylthiacalix[4]arene and its inclusion property[J]. Tetrahedron, 2000, 56(11): 1437-1443  doi: 10.1016/S0040-4020(00)00030-2

    17. [17]

      DOLOMANOV O V, BOURHIS L J, GILDEA R J, HOWARD J A. K, PUSCHMANN H. OLEX2: A complete structure solution, refinement and analysis program[J]. J. Appl. Crystallogr., 2009, 42(2): 339-341  doi: 10.1107/S0021889808042726

    18. [18]

      SHELDRICK G M. Crystal structure refinement with SHELXL[J]. Acta Crystallogr. Sect. C, 2015, C71: 3-8

    19. [19]

      CUI Y J, ZHU F L, CHEN B L, QIAN G D. Metal-organic frameworks for luminescence thermometry[J]. Chem. Commun., 2015, 51(35): 7420-7431  doi: 10.1039/C5CC00718F

    20. [20]

      SHANG R P, LYU Z Y, LIU K J, DONG L L, SUN D S, TAN T X, SHEN S D, WEI S, ZHOU L H, LU Z, LUO P C, ZHANG X W, YOU H P. Novel GdAlGe2O7∶Bi3+, Eu3+ phosphors with anti-thermal quenching properties for high sensitivity optical temperature measurement[J]. Mater. Today Phys., 2024, 43: 101391  doi: 10.1016/j.mtphys.2024.101391

    21. [21]

      FONGER W H, STRUCK C W. Eu+3 5D resonance quenching to the charge-transfer states in Y2O2S, La2O2S, and LaOCl[J]. J. Chem. Phys., 1970, 52(12): 6364-6372  doi: 10.1063/1.1672952

    22. [22]

      LIU R Z, WU H Y, WANG S W, YUAN W H, ZHANG S, PANG R, JIANG L H, LI D, LI C Y, ZHANG H J. Ba3LuGa2O7.5∶Bi3+ phosphors with potential application in full-spectrum WLEDs and temperature sensing[J]. J. Mater. Chem. C, 2023, 11(7): 2653-2663  doi: 10.1039/D2TC01386J

    23. [23]

      AMARASINGHE D K, RABUFFETTI F A. Bandshift luminescence thermometry using Mn4+∶Na4Mg(WO4)3 phosphors[J]. Chem. Mater., 2019, 31(24): 10197-10204  doi: 10.1021/acs.chemmater.9b03886

    24. [24]

      TANG Q, LIU S X, LIANG D D, MA F J, REN G J, WEI F, YANG Y, LI C C. Lanthanide-organic complexes based on polyoxometalates: Solvent effect on the luminescence properties[J]. J. Solid State Chem., 2012, 190: 85-91  doi: 10.1016/j.jssc.2012.02.006

  • 加载中
    1. [1]

      Yadan SUNXinfeng LIQiang LIUOshio HirokiYinshan MENG . Structures and magnetism of dinuclear Co complexes based on imine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2212-2220. doi: 10.11862/CJIC.20240131

    2. [2]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    3. [3]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    4. [4]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    5. [5]

      Shili WangMamitiana Roger RazanajatovoXuedong DuShunli WanXin HeQiuming PengQingrui Zhang . Recent advances on decomplexation mechanisms of heavy metal complexes in persulfate-based advanced oxidation processes. Chinese Chemical Letters, 2024, 35(6): 109140-. doi: 10.1016/j.cclet.2023.109140

    6. [6]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

    7. [7]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    8. [8]

      Yanrui Liu Paramaguru Ganesan Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369

    9. [9]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    10. [10]

      Zhu ShuXin LeiYeye AiKe ShaoJianliang ShenZhegang HuangYongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585

    11. [11]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    12. [12]

      Yanting YangGuorong WangKangjing LiWen YangJing ZhangJian ZhangShili LiXianming Zhang . Tuning up of chromism, luminescence in cadmium-viologen complexes through polymorphism strategy: Inkless erasable printing application. Chinese Chemical Letters, 2025, 36(1): 110123-. doi: 10.1016/j.cclet.2024.110123

    13. [13]

      Min-Hang ZhouJun JiangWei-Min He . EDA-complexes-enabled photochemical synthesis of α-amino acids with imines and tetrabutylammonium oxalate. Chinese Chemical Letters, 2025, 36(1): 110446-. doi: 10.1016/j.cclet.2024.110446

    14. [14]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    15. [15]

      Huanyu LiuGang YuRuoyao GuoHao QiJiayin ZhengTong JinZifeng ZhaoZuqiang BianZhiwei Liu . Direct identification of energy transfer mechanism in Ce-Mn system by constructing molecular heteronuclear complexes. Chinese Chemical Letters, 2025, 36(2): 110296-. doi: 10.1016/j.cclet.2024.110296

    16. [16]

      Jumei ZhangZiheng ZhangGang LiHongjin QiaoHua XieLing Jiang . Ligand-mediated reactivity in CO oxidation of yttrium-nickel monoxide carbonyl complexes. Chinese Chemical Letters, 2025, 36(2): 110278-. doi: 10.1016/j.cclet.2024.110278

    17. [17]

      Junyi YuYin ChengAnhong CaiXianfeng HuangQingrui Zhang . Synthetic Cu(Ⅲ) from copper plating wastewater for onsite decomplexation of Cu(Ⅱ)- and Ni(Ⅱ)-organic complexes. Chinese Chemical Letters, 2025, 36(2): 110549-. doi: 10.1016/j.cclet.2024.110549

    18. [18]

      Chun-Yun Ding Ru-Yuan Zhang Yu-Wu Zhong Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2024.100393

    19. [19]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    20. [20]

      Yuanyu YANGJianhua XUEYujia BAILulu CUIDongdong YANGQi MA . Design, synthesis, and detection of Al3+ of two zinc complexes based on Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1207-1216. doi: 10.11862/CJIC.20250005

Metrics
  • PDF Downloads(0)
  • Abstract views(125)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return