Citation: Qi WANG, Ying CHENG, Yuyan WANG, Yibing XIAO, Haozhe LU, Yansong ZHANG, Shengling LI, Jiazi TANTAI, Na SUN, Lifeng DING, Jinqin GUO, Peng JIN. "Shining dot" in vinegar—Extraction of carbon quantum dots and the fluorescence properties analysis[J]. Chinese Journal of Inorganic Chemistry, ;2026, 42(1): 87-96. doi: 10.11862/CJIC.20250127 shu

"Shining dot" in vinegar—Extraction of carbon quantum dots and the fluorescence properties analysis

Figures(7)

  • This study developed a facile and green method using vinegar as the carbon source to prepare fluorescent carbon quantum dots (vCDs) via direct dialysis. The synthesized vCDs were characterized by morphology, composition, and fluorescent properties. The results showed that the vCDs had a mass concentration of 0.006 2 g·mL-1. The vCDs showed the uniform particle distribution with an average size of 4.05 nm and displayed optimal fluorescence emission at 460 nm. Notably, the vCDs showed excellent photostability and salt resistance. Furthermore, the fluorescence of vCDs was highly sensitive to pH due to the surface protonation effects and Fe3+ via selective fluorescence quenching, which endowed the potential capacity in pH and Fe3+ sensing. Besides, vCDs were incorporated into polyvinyl butyral (PVB) to fabricate the fluorescent films.
  • 加载中
    1. [1]

      LIM S Y, SHEN W, GAO Z Q. Carbon quantum dots and their applications[J]. Chem. Soc. Rev., 2015, 44(1): 362-381  doi: 10.1039/C4CS00269E

    2. [2]

      DAS S, MONDAL S, GHOSH D. Carbon quantum dots in bioimaging and biomedicines[J]. Front. Bioeng. Biotech., 2024, 1: 1333752

    3. [3]

      SHI L L, DING L Y, ZHANG Y Q, LU S Y. Application of room- temperature phosphorescent carbon dots in information encryption and anti-counterfeiting[J]. Nano Today, 2024, 55: 102200  doi: 10.1016/j.nantod.2024.102200

    4. [4]

      XUE S S, LI P F, SUN L, AN L, QU D, WANG X Y, SUN Z C. The formation process and mechanism of carbon dots prepared from aromatic compounds as precursors: A review[J]. Small, 2023, 19(31): 2206180  doi: 10.1002/smll.202206180

    5. [5]

      WANG B Y, SONG H Q, TANG Z Y, YANG B, LU S Y. Ethanol- derived white emissive carbon dots: The formation process investigation and multi-color/white LEDs preparation[J]. Nano Res., 2022, 15(2): 942-949  doi: 10.1007/s12274-021-3579-5

    6. [6]

      WANG B Y, YU J K, SUI L Z, ZHU S J, TANG Z Y, YANG B, LU S Y. Rational design of multi-color-emissive carbon dots in a single reaction system by hydrothermal[J]. Adv. Sci., 2021, 8(1): 2001453  doi: 10.1002/advs.202001453

    7. [7]

      LI J N, ZHANG D K, XIA J B. The controllable synthesis of multi- color carbon quantum dots modified by polythiophene and their application in fluorescence detection of Au3+ and Hg2+[J]. Spectrochim. Acta Pt. A‒Molec. Biomolec. Spectr., 2024, 322: 124794  doi: 10.1016/j.saa.2024.124794

    8. [8]

      LIAO J F, YAO Y, LEE C H, WU Y Z, LI P. In vivo biodistribution, clearance, and biocompatibility of multiple carbon dots containing nanoparticles for biomedical application[J]. Pharmaceutics, 2021, 13(11): 1872  doi: 10.3390/pharmaceutics13111872

    9. [9]

      SHI Y X, XU H M, YUAN T, MENG T, WU H, CHANG J Q, WANG H Y, SONG X Z, LI Y C, LI X H, ZHANG Y, XIE W J, FAN L Z. Carbon dots: An innovative luminescent nanomaterial[J]. Aggregate, 2022, 3: e108  doi: 10.1002/agt2.108

    10. [10]

      ZOU L L, WANG H, HE B, ZENG L J, TAN T, CAO H Q, HE X Y, ZHANG Z W, GUO S R, LI Y P. Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics[J]. Theranostics, 2016, 6(6): 762-772  doi: 10.7150/thno.14988

    11. [11]

      GE J C, JIA Q Y, LIU W M, LAN M H, ZHOU B J, GUO L, ZHOU H Y, ZHANG H Y, WANG Y, GU Y, MENG X M, WANG P F. Carbon dots with intrinsic theranostic properties for bioimaging, red-light-triggered photodynamic/photothermal simultaneous therapy in vitro and in vivo[J]. Adv. Healthcare Mater., 2016, 5(6): 665-675  doi: 10.1002/adhm.201500720

    12. [12]

      FENG T L, TAO S Y, YUE D, ZENG Q S, CHEN W H, YANG B. Recent advances in energy conversion applications of carbon dots: From optoelectronic devices to electrocatalysis[J]. Small, 2020, 16(31): 2001295  doi: 10.1002/smll.202001295

    13. [13]

      LI S H, SU W, WU H, YUAN T, YUAN C, LIU J, DENG G, GAO X C, CHEN Z M, BAO Y M, YUAN F L, ZHOU S X, TAN H W, LI Y C, LI X H, FAN L Z, ZHU J, CHEN A T, LIU F Y, ZHOU Y, LI M, ZHAI X C, ZHOU J B. Targeted tumour theranostics in mice via carbon quantum dots structurally mimicking large amino acids[J]. Nat. Biomed. Eng., 2020, 4(7): 704-716  doi: 10.1038/s41551-020-0540-y

    14. [14]

      WANG Q, CHENG Y, DING L F, LI S L, ZHANG J, NIU Y L, JING Z Y. N, S, Br co-doped carbon dots: One-step synthesis and fluorescent detection of 6-mercaptopurine in tablet[J]. J. Pharma. Anal., 2024, 14(2): 291-293  doi: 10.1016/j.jpha.2023.11.001

    15. [15]

      CARRERA C, GALÁN-GONZÁLEZ A, MASER W K, BENITO A M. Multifaceted role of H2O2 in the solvothermal synthesis of green-emitting nitrogen-doped graphene quantum dots[J]. Chem. Sci., 2025, 16(8): 3662-3670  doi: 10.1039/D4SC07896A

    16. [16]

      WANG Q, ZHANG Z R, YANG T, HAN Y J, CHENG Y, WU J N, BAI J J, MA C L, NIU Y L, SHUANG S M. Multiple fluorescence quenching effects mediated fluorescent sensing of captopril based on amino acids-derivative carbon nanodots[J]. Spectrochim. Acta Pt. A‒Molec. Biomolec. Spectr., 2022, 269: 120742  doi: 10.1016/j.saa.2021.120742

    17. [17]

      LI P F, XUE S S, SUN L, ZONG X P, AN L, QU D, WANG X Y, SUN Z C. Formation and fluorescent mechanism of red emissive carbon dots from o-phenylenediamine and catechol system[J]. Light‒Sci. Appl., 2022, 11(1): 298

    18. [18]

      MA Y J, WU L L, REN X Y, ZHANG Y Q, LU S Y. Toward kilogram-scale preparation of full-color carbon dots by simply stirring at room temperature in air[J]. Adv. Funct. Mater., 2023, 33(50): 2305867  doi: 10.1002/adfm.202305867

    19. [19]

      BARTOLOMEI B, BOGO A, AMATO F, RAGAZZON G, PRATO M. Nuclear magnetic resonance reveals molecular species in carbon nanodot samples disclosing flaws[J]. Angew. Chem. ‒Int. Edit., 2022, 61(20): e202200038  doi: 10.1002/anie.202200038

    20. [20]

      ZHAO C X, JIAO Y, HU F, YANG Y L. Green synthesis of carbon dots from pork and application as nanosensors for uric acid detection[J]. Spectrochim. Acta Pt. A‒Molec. Biomolec. Spectr., 2019, 190: 360-367

    21. [21]

      WU Y Y, SONG X Y, WANG N Y, CONG S, ZHAO X, RAIC R, TAN M Q. Carbon dots from roasted chicken accumulate in lysosomes and induce lysosome-dependent cell death[J]. Food Funct., 2020, 11(11): 10105-10113  doi: 10.1039/D0FO02144J

    22. [22]

      WANG L, ZHOU H S. Green synthesis of luminescent nitrogen-doped carbon dots from milk and its imaging application[J]. Anal. Chem., 2014, 86(18): 8902-8905  doi: 10.1021/ac502646x

    23. [23]

      ZHONG L N, CHEN J L, ZHAO Q H. Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid[J]. Chinese J. Inorg. Chem., 2025, 41(4): 709-718  doi: 10.11862/CJIC.20240280

    24. [24]

      GU D, SHANG S M, YU Q, SHEN J. Green synthesis of nitrogen-doped carbon dots from lotus root for Hg(Ⅱ) ions detection and cell imaging[J]. Appl. Surf. Sci., 2016, 390: 38-42  doi: 10.1016/j.apsusc.2016.08.012

    25. [25]

      WANG Y, GU Z Z, DONG J Y, ZHU J, LIU C G, LI G H, LU M C, HAN J, CAO S N, WANG W. Effects of kelp-derived carbon dots on embryonic development of zebrafish[J]. Chinese J. Inorg. Chem., 2024, 40(6): 1209-1217  doi: 10.11862/CJIC.20230423

    26. [26]

      ZHANG Q M, ZHANG L P, ZHENG K W, YANG G Q, HE S J, DU X J, CHEN F H, LI B. Green synthesis of high-stability black rice carbon dots for application in cell imaging[J]. Chinese J. Inorg. Chem., 2023, 39(4): 735-745  doi: 10.11862/CJIC.2023.045

    27. [27]

      SK M P, JAISWAL A, PAUL A, GHOSH S S, CHATTOPADHYAY A. Presence of amorphous carbon nanoparticles in food caramels[J]. Sci. Rep., 2012, 2: 383  doi: 10.1038/srep00383

    28. [28]

      YIN J, LIU K F, YUAN S F, GUO Y H, YU H, CHENG Y L, XIE Y F, QIAN H, YAO W R. Carbon dots in breadcrumbs: Effect of frying on them and interaction with human serum albumin[J]. Food Chem., 2023, 424: 136371  doi: 10.1016/j.foodchem.2023.136371

    29. [29]

      WEN F Z, LI P Y, ZHANG Y, ZHONG H Y, YAN H J, SU W. Preparation, characterization of green tea carbon quantum dots/curcumin antioxidant and antibacterial nanocomposites[J]. J. Mol. Struct., 2023, 1273: 134247

    30. [30]

      WANG Q, CHENG Y, DING L F, ZHANG X R, LI S L, ZHANG J, NIU Y L, DONG C, SHUANG S M. Chinese food seasoning derived carbon dots for highly selective detection of Fe3+ and smartphone-based dual-color fluorescence ratiometric visualization sensing[J]. J. Mol. Struct., 2024, 1318: 139209

    31. [31]

      CAO L. Discovery and property studies of carbon nanoparticles in mature vinegar[D]. Dalian: Dalian Polytechnic University, 2019: 10-28

    32. [32]

      CAO L, SONG X Y, SONG Y K, BI J R, SHUANG C, YU C X, TAN M Q. Fluorescent nanoparticles from mature vinegar: Their properties and interaction with dopamine[J]. Food Funct., 2017, 8: 4744-4751  doi: 10.1039/C7FO01475A

    33. [33]

      PENG J, GAO W, GUPTA B K, LIU Z, ROMERO-ABURTO R, GE L H, SONG L, ALEMANY L B, ZHAN X B, GAO G H, VITHAYATHIL S A, KAIPPARETTU B A, MARTI A A, HAYASHI T, ZHU J J, AJAYAN P M. Graphene quantum dots derived from carbon fibers[J]. Nano Lett., 2012, 12: 844-849  doi: 10.1021/nl2038979

    34. [34]

      TANG Q W, ZHU W L, HE B L, YANG P Z. Rapid conversion from carbohydrates to large-scale carbon quantum dots for all-weather solar cells[J]. ACS Nano, 2017, 11(2): 1540-1547  doi: 10.1021/acsnano.6b06867

    35. [35]

      ZHANG X R, WANG J, HASAN E, SUN X C, ASIF M, AZIZ A, LU W J, DONG C, SHUANG S M. Bridging biological and food monitoring: A colorimetric and fluorescent dual-mode sensor based on N-doped carbon dots for detection of pH and histamine[J]. J. Hazard. Mater., 2024, 470: 134271  doi: 10.1016/j.jhazmat.2024.134271

  • 加载中
    1. [1]

      Lingqi Zhang Hairong Huang Jialin Li Li Ji Yufan Pan Meiling Ye Cuixue Chen Shunü Peng . 桂花碳量子点的绿色制备及科普应用方案. University Chemistry, 2025, 40(8): 298-306. doi: 10.12461/PKU.DXHX202409138

    2. [2]

      Chengcheng Si Linshan Chai Huiyuan Liu Liye Sun Shijian Cheng Hailing Li Wenyun Wang Fang Liu Qing Feng Min Liu . Harry Potter China Tour Themed Innovative Science Popularization Experiment: Chemistry Magic Meets the Real World at Wuhan Station. University Chemistry, 2024, 39(9): 283-287. doi: 10.12461/PKU.DXHX202401069

    3. [3]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    4. [4]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    5. [5]

      Shuting Zhuang Lida Zhao . Teaching through Research: A Comprehensive Experiment on Carbon Quantum Dots from Microplastic Waste. University Chemistry, 2025, 40(10): 217-224. doi: 10.12461/PKU.DXHX202412010

    6. [6]

      Shiyi ChenJialong FuJianping QiuGuoju ChangShiyou Hao . Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(1): 100135-0. doi: 10.1016/j.actphy.2025.100135

    7. [7]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    8. [8]

      Yuecheng ZHANGFan YANGShiyu ZHANGChengjun MARui TIANXuehua SUNHaoyu LILingbo SUNHongyan MA . B-doped carbon quantum dots with long-afterglow room-temperature phosphorescence: Applications in information encryption and humidity sensing. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1361-1370. doi: 10.11862/CJIC.20240415

    9. [9]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    10. [10]

      Yufan Pan Xue Ding Jiayu Lin Haiting Wu Hairong Huang Cuixue Chen Meiling Ye . Oil Cosmetics, Charming Chemistry: A Gradient Science Popularization Scheme for Cream Cosmetic Preparation. University Chemistry, 2025, 40(4): 382-389. doi: 10.12461/PKU.DXHX202406078

    11. [11]

      Wei Gao Jinyue Yang Wenwei Zhang . Practice and Exploration of Promoting the “Double Reduction” Work with Popular Science Resources in Universities. University Chemistry, 2024, 39(9): 385-391. doi: 10.3866/PKU.DXHX202311008

    12. [12]

      Xiangrong Zhang Guoxin Yang Peiling Lin Yanhong Bai Baoping Li Honglang Liu Kai Xi . Exploration and Practice of University Resources in Diversifying Chemistry Science Popularization. University Chemistry, 2026, 41(2): 248-254. doi: 10.12461/PKU.DXHX202502018

    13. [13]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    14. [14]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    15. [15]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    16. [16]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    17. [17]

      Tianlong Zhang Xinyuan Zhang Xing Zhao Hongsheng Tang Yan Li Hua Li . Colors of Dotted Stone: The Colorful World of Dunhuang Murals. University Chemistry, 2024, 39(6): 238-245. doi: 10.3866/PKU.DXHX202401047

    18. [18]

      Qiuyu Ming Huijun Jiang Zhihao Zhang . A Sightseeing Tour of Folic Acid Processing Plant. University Chemistry, 2024, 39(9): 11-15. doi: 10.12461/PKU.DXHX202404092

    19. [19]

      Feiyang Liu Liuhong Song Miaoyu Fu Zhi Zheng Gang Xie Junlong Zhao . Tryptophan’s Employment Journey. University Chemistry, 2024, 39(9): 16-21. doi: 10.12461/PKU.DXHX202404037

    20. [20]

      Tianlong Zhang Chenjia Song Wenmin Zhao Hongsheng Tang Yan Li Hua Li . Dream as a Horse, Poem “Liquor” while the Age. University Chemistry, 2024, 39(9): 48-54. doi: 10.12461/PKU.DXHX202403076

Metrics
  • PDF Downloads(0)
  • Abstract views(75)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return