Citation: Zihe SONG, Jinjin ZHAO, Ning REN, Jianjun ZHANG. Crystal structure, thermal analysis, and luminescence properties of six heterocyclic lanthanide complexes[J]. Chinese Journal of Inorganic Chemistry, ;2026, 42(1): 181-192. doi: 10.11862/CJIC.20250126 shu

Crystal structure, thermal analysis, and luminescence properties of six heterocyclic lanthanide complexes

Figures(9)

  • Six new lanthanide complexes: [Ln(3,4-DEOBA)3(4,4′-DM-2,2′-bipy)]2·2C2H5OH, [Ln=Dy (1), Eu (2), Tb (3), Sm (4), Ho (5), Gd (6); 3,4-DEOBA-=3,4-diethoxybenzoate, 4,4′-DM-2,2′-bipy=4,4′-dimethyl-2,2′-bipyridine] were successfully synthesized by the volatilization of the solution at room temperature. The crystal structures of six complexes were determined by single-crystal X-ray diffraction technology. The results showed that the complexes all have a binuclear structure, and the structures contain free ethanol molecules. Moreover, the coordination number of the central metal of each structural unit is eight. Adjacent structural units interact with each other through hydrogen bonds and further expand to form 1D chain-like and 2D planar structures. After conducting a systematic study on the luminescence properties of complexes 1-4, their emission and excitation spectra were obtained. Experimental results indicated that the fluorescence lifetimes of complexes 2 and 3 were 0.807 and 0.845 ms, respectively. The emission spectral data of complexes 1-4 were imported into the CIE chromaticity coordinate system, and their corresponding luminescent regions cover the yellow light, red light, green light, and orange-red light bands, respectively. Within the temperature range of 299.15-1 300 K, the thermal decomposition processes of the six complexes were comprehensively analyzed by using TG-DSC/FTIR/MS technology. The hypothesis of the gradual loss of ligand groups during the decomposition process was verified by detecting the escaped gas, 3D infrared spectroscopy, and ion fragment information detected by mass spectrometry. The specific decomposition path is as follows: firstly, free ethanol molecules and neutral ligands are removed, and finally, acidic ligands are released; the final product is the corresponding metal oxide.
  • 加载中
    1. [1]

      GUTIERREZ-FINOL G M, GIMENEZ-SANTAMARINA S, HU Z, ROSALENY L E, CARDONA-SERRA S, GAITA-ARINO A. Lanthanide molecular nanomagnets as probabilistic bits[J]. Comput. Mater., 2023, 9(1): 196  doi: 10.1038/s41524-023-01149-7

    2. [2]

      LIU C H, ZHANG L J, BAI F Y, WANG Y, HONG Y Z, LI C R, XING Y H. Dye adsorption and fluorescence sensing behaviour about rare earth-indole carboxylic acid complexes[J]. J. Inorg. Organomet. Polym. Mater., 2018, 28(5): 1839-1849  doi: 10.1007/s10904-018-0869-9

    3. [3]

      REN Y X, MA Z H, GAO T, LIANG Y C. Advance progress on luminescent sensing of nitroaromatics by crystalline lanthanide-organic complexes[J]. Molecules, 2023, 28(11): 4481  doi: 10.3390/molecules28114481

    4. [4]

      TSARYUK V I, ZHURAVLEV K P, GAWRYSZEWSKA P. Processes of luminescence quenching in europium aromatic carboxylates with the participation of LMCT states: A brief review[J]. Coord. Chem. Rev., 2023, 489: 215206  doi: 10.1016/j.ccr.2023.215206

    5. [5]

      HOODA A, DALAL A, NEHRA K, KUMAR P, SINGH D, KUMAR S, MALIK R S, KUMAR R, KUMAR P. Mononuclear luminous beta-diketonate Ln(Ⅲ) complexes with heteroaromatic auxiliary ligands: Synthesis and luminescence characteristics[J]. Luminescence, 2022, 37(11): 1921-1931  doi: 10.1002/bio.4376

    6. [6]

      DALAL A, NRHRA K, HOODA A, SINGH D, KUMAR P, KUMAR S, MALIK R S, RATHI B. Luminous lanthanide diketonates: Review on synthesis and optoelectronic characterizations[J]. Inorg. Chim. Acta, 2023, 550: 121406  doi: 10.1016/j.ica.2023.121406

    7. [7]

      HUANG B H, TSAI C Y, CHEN C T, KO B T. Metal complexes containing nitrogen-heterocycle based aryloxide or arylamido derivatives as discrete catalysts for ring-opening polymerization of cyclic esters[J]. Dalton Trans., 2016, 45(44): 17557-17580  doi: 10.1039/C6DT03384A

    8. [8]

      ZHANG C N, SHI Y B, LIU R, LI H, CAI X W, WANG X Y, CHEN S Y, ZHENG S J, CEN P P, CHEN L. Syntheses, structures and magnetisms of dimethyl phosphate-bridged dinuclear lanthanide complexes with pentadentate macrocyclic ligand[J]. J. Mol. Struct., 2025, 1321: 139668

    9. [9]

      WANG C L, XU S L, REN N, ZHANG J J. Construction, thermochemistry, and fluorescence properties of novel lanthanide complexes synthesized from halogenated aromatic carboxylic acids and nitrogen-containing ligands[J]. Acta Phys.‒Chim. Sin., 2023, 39(1): 2206035

    10. [10]

      SHI R, YU L, TIAN Y R, WANG X M, SUN Z Y, QI B, LUO F. pH response luminescence reversible lanthanide-2, 6-pyridinedicarboxylic acid complex with tunable multi-color and white light emission for fluorescent anti-counterfeiting labels and LED[J]. Mater. Chem. Phys., 2022, 280: 125806  doi: 10.1016/j.matchemphys.2022.125806

    11. [11]

      LI L X, WANG Y X, GAO Z Y, MAO X H, ZHANG X T, XING W, JIA C Y, HUANG L J, TANG J G. Research progress on electrospinning fluorescent nanofibers based on rare earth complex[J]. Dyes Pigment., 2024, 224: 111977  doi: 10.1016/j.dyepig.2024.111977

    12. [12]

      BAO G C. Lanthanide complexes for drug delivery and therapeutics[J]. J. Lumin., 2020, 228: 117622  doi: 10.1016/j.jlumin.2020.117622

    13. [13]

      PALANISAMY P, ANANDAN M, RAMAN G, NUTALAPATI V. Antenna effect on Zn(Ⅱ) porphyrin-based molecular ensembles for the detection of 2, 4-dinitrophenol through energy and electron transfer process[J]. Microchim. Acta, 2024, 192(1): 1

    14. [14]

      MIAHRA N, KUMAR K, PANDEY H, RAJ ANAND S, YADAV R, PRAKASH SRIVASTAVA S, PANDEY R. Synthesis, characterization, optical and anti-bacterial properties of benzothiazole Schiff bases and their lanthanide(Ⅲ) complexes[J]. J. Saudi Chem. Soc., 2020, 24(12): 925-933  doi: 10.1016/j.jscs.2020.09.009

    15. [15]

      ZHAO L H, CHEN H M, YANG A H, WU D F, GOU J, CUI J Z, GAO H L. Synthesis, characterization and properties of lanthanide complexes with different ancillary ligands[J]. Inorg. Chim. Acta, 2019, 490: 240-245  doi: 10.1016/j.ica.2019.03.030

    16. [16]

      KIRCHEVA V, ZAHARIEVA J, MANOLOV I, MILANOVA M. Spectral properties of Tb(Ⅲ) and Nd(Ⅲ) complexes with 3, 3′-(phenylmethylene) bis(4-hydroxy-2H-1-benzopyran-2-one)[J]. J. Optoelectron. Adv. Mater., 2021, 23(9/10): 508-517

    17. [17]

      SARKAR A, JANA S, NAYEK H P. A pentanuclear Er(Ⅲ) coordination cluster as a catalyst for selective synthesis of 1, 2-disubstituted benzimidazoles[J]. Appl. Organomet. Chem., 2021, 35(6): e6200  doi: 10.1002/aoc.6200

    18. [18]

      ZHU T T, TAO Y T, SUN Y, WANG X, ZHANG X W, CHAI J L, HAN J, ZHAO X L, CHEN X D. Lanthanide complexes based on an anthraquinone derivative ligand and applications as photocatalysts for visible-light driving photooxidation reactions[J]. J. Mol. Struct., 2021, 1236: 130289

    19. [19]

      CZYLKOWSKA A, CZAKIS-SULIKOWSKA D, KACZMAREK A, MARKIEWICZ M. Thermal behavior and other properties of Pr(Ⅲ), Sm(Ⅲ), Eu(Ⅲ), Gd(Ⅲ), Tb(Ⅲ) complexes with 4,4′-bipyridine and trichloroacetates[J]. J. Therm. Anal. Calorim., 2011, 105(1): 331-339  doi: 10.1007/s10973-011-1462-4

    20. [20]

      DAS C, UPADHYAY A, ANSARI K U, OGIWARA N, KITAO T, HORIKE S, SHANMUGAM M. Lanthanide-based porous coordination polymers: Syntheses, slow relaxation of magnetization, and magnetocaloric effect[J]. Inorg. Chem., 2018, 57(11): 6584-6598  doi: 10.1021/acs.inorgchem.8b00720

    21. [21]

      REJITHA K S, ICHIKAWA T, MATHEW S. Thermal decomposition studies of [Ni(NH3)6]X2 (X=Cl, Br) in the solid state using TG-MS and TR-XRD[J]. J. Therm. Anal. Calorim., 2010, 103(2): 515-523

    22. [22]

      MATERAZZI S, RISOLUTI R, NAPOLI A. EGA-MS study to characterize the thermally induced decomposition of Co(Ⅱ), Ni(Ⅱ), Cu(Ⅱ) and Zn(Ⅱ) complexes with 1, 1-diaminobutane-schiff base[J]. Thermochim. Acta, 2015, 606: 90-94  doi: 10.1016/j.tca.2015.03.009

    23. [23]

      WANG L L, WANG T F, ZHANG Y, PENG X Q, SONG W, YANG J S, YUAN C D. Oxidation behaviors of hongqian heavy crude oil characterized by TG-DSC-FTIR-MS within full temperature regions[J]. Fuel, 2023, 353: 129242  doi: 10.1016/j.fuel.2023.129242

    24. [24]

      ZHOU L, LI F S, WANG W C, ZHANG H C, DUAN Y Z, WANG H. Effects of phospholipids on pyrolysis and oxidation characteristics of jatropha biodiesel: TG-FTIR-MS experiment and reaxff-md simulation[J]. Fuel, 2025, 383: 133816  doi: 10.1016/j.fuel.2024.133816

    25. [25]

      SHELDRICK G M, SCHNEIDER T R. Shelxl: High-resolution refinement[J]. Methods Enzymol., 1997, 277: 319-343

    26. [26]

      SHELDRICK G M. A short history of SHELX[J]. Acta Crystallogr. Sect. A, 2008, A64: 112-122

    27. [27]

      MADANHIRE T, DAVIDS H, PEREIRA M C, HOSTEN E C, ABRAHAMS A. Synthesis, characterisation and anticancer activity screening of lanthanide(Ⅲ) acetate complexes with benzohydrazone and nicotinohydrazone ligands[J]. Polyhedron, 2020, 184: 114560  doi: 10.1016/j.poly.2020.114560

    28. [28]

      WANG C L, XU S L, LIU Z J, REN N, ZHANG J J. Synthesis, structure, fluorescence and thermochemical properties of the lanthanide complexes of 2-chloro-6-fluorobenzoic acid and 2, 2′∶6′2″-tripyridine ligands[J]. J. Solid State Chem., 2022, 315: 123454  doi: 10.1016/j.jssc.2022.123454

    29. [29]

      DU D D, HAO Y F, WANG X X, ZHAO J J, REN N, ZHANG J J. Crystal structure, spectra, and thermal behavior of lanthanide complexes with 2-chloro-4-fluorobenzoic acid and 5, 5′-dimethyl-2,2′-bipyridine[J]. Chinese J. Inorg. Chem., 2023, 39(9): 1807-1816

    30. [30]

      HE S M, SUN S J, ZHENG J R, ZHANG J J. Molecular spectrum of lanthanide complexes with 2, 3-dichlorobenzoic acid and 2, 2-bipyridine[J]. Spectroc. Acta Pt. A‒Molec. Biomolec. Spectr., 2014, 123: 211-215  doi: 10.1016/j.saa.2013.12.023

    31. [31]

      ZHAO J J, HAN Y H, SONG Z H, ZHANG J J. Crystal structure, thermal decomposition kinetics and thermodynamic properties of gadolinium complex with 2-chloro-6-fluorobenzoic acid[J]. Journal of Hebei Normal University (Natural Science), 2024, 48(6): 573-581

    32. [32]

      MIKHALYOVA E A, YAKOVENKO A V, ZELLER M, GAVRILENKO K S, LOFLAND S E, ADDISON A W, PAVLISHCHUK V V. Structure, magnetic and luminescence properties of the lanthanide complexes Ln2(Salphen)3·H2O (Ln=Pr, Nd, Sm, Eu, Gd, Tb, Dy; H2Salphen=N, N′-bis(salicylidene)-1, 2-phenylenediamine)[J]. Inorg. Chim. Acta, 2014, 414: 97-104  doi: 10.1016/j.ica.2014.01.034

    33. [33]

      DU D D, REN N, ZHANG J J. Syntheses, crystal structures, thermodynamic and fluorescent properties of dinuclear lanthanide complexes constructed with 2-fluorobenzoic acid and 5, 5′-dimethyl-2,2′-bipyridine[J]. J. Therm. Anal. Calorim., 2021, 147: 1-10

    34. [34]

      SASIDHARAN N, HARIHARANATH B, RAJENDRAN A G. Thermal decomposition studies on energetic triazole derivatives[J]. Thermochim. Acta, 2011, 520: 139-144  doi: 10.1016/j.tca.2011.03.031

    35. [35]

      CARTER K P, POPE A, CAHILL C L. A series of Ln-p-chlorobenzoic acid-terpyridine complexes: Lanthanide contraction effects, supramolecular interactions and luminescent behavior[J]. CrystEngComm, 2014, 16(10): 1873-1884  doi: 10.1039/c3ce42267d

    36. [36]

      WU W H, LV S F, LIU X, QU H Q, ZHANG H C, XU J Z. Using TG-FTIR and TG-MS to study thermal degradation of metal hypophosphites[J]. J. Therm. Anal. Calorim., 2014, 118(3): 1569-1575  doi: 10.1007/s10973-014-4085-8

    37. [37]

      PIELICHOWSKA K. Thermooxidative degradation of polyoxymethylene homo-and copolymer nanocomposites with hydroxyapatite: Kinetic and thermoanalytical study[J]. Thermochim. Acta, 2015, 600: 7-19  doi: 10.1016/j.tca.2014.11.016

    38. [38]

      GUSEV A, KISKIN M, LUTSENKO I, SVETOGOROV R, VEBER S, MINAKOVA O, KORSHUNOV V, TAYDAKOV I, LINERT W. Triazole-based lanthanide(Ⅲ) adducts: Photo-and thermochromic luminescence[J]. J. Lumin., 2021, 238: 118305  doi: 10.1016/j.jlumin.2021.118305

    39. [39]

      KUMAR M, WU L H, KARIEM M, FRANCONETTI A, SHEIKH H N, LIU S J, SAHOO S C, FRONTERA A. A series of lanthanide-based metal-organic frameworks derived from furan-2, 5-dicarboxylate and glutarate: Structure-corroborated density functional theory study, magnetocaloric effect, slow relaxation of magnetization, and luminescent properties[J]. Inorg. Chem., 2019, 58(12): 7760-7774  doi: 10.1021/acs.inorgchem.9b00219

    40. [40]

      LI J J, ZHANG X Q, YUE B, WANG A L, KONG L J, ZHOU J, CHU H B, ZHAO Y L. Preparation, crystal structure and luminescence properties of lanthanide complexes with 2, 4, 6-tri(pyridin-2-yl)-1, 3, 5-triazine and organic carboxylic acid[J]. Crystals, 2017, 7: 139  doi: 10.3390/cryst7050139

    41. [41]

      NEHRA K, DALAL A, HOODA A, KUMAR P, SINGH D, KUMAR S, MALIK R S, KUMAR P. Luminous terbium and samarium complexes with diacetylmethane and substituted 1, 10-phenanthroline derivatives for display applications: Preparation and optoelectronic investigations[J]. J. Lumin., 2022, 249: 119032  doi: 10.1016/j.jlumin.2022.119032

  • 加载中
    1. [1]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    2. [2]

      Jiarong ZHUXiaohua ZHANGXinting XIONGXuliang NIEXiuying SONGMiaomiao ZHANGDayong PENGXiuguang YI . Crystal structure, Hirshfeld surface analysis, and antifungal activity of five complexes based on 2,5-bis(carboxymethoxy)terephthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2358-2370. doi: 10.11862/CJIC.20250150

    3. [3]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    4. [4]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    5. [5]

      Yingyue ZHANGLiuqing KANGYating YANGXiaofen GUANWenmin WANG . Crystal structure and antibacterial activity of two Gd2 complexes based on polydentate Schiff-base ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1867-1877. doi: 10.11862/CJIC.20250100

    6. [6]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    7. [7]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    8. [8]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    9. [9]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    10. [10]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    11. [11]

      Ruiyan CHENYanping HEJian ZHANG . Synthesis and third-order nonlinear optical property of Ti4L6 cage-based metal-organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2149-2156. doi: 10.11862/CJIC.20250177

    12. [12]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    13. [13]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    14. [14]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    15. [15]

      Yukun CHENKexin FENGBolun ZHANGWentao SONGJianjun ZHANG . Syntheses, crystal structures, and diametrically opposed mechanically-stimulated luminescence response of two Mg(Ⅱ) metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1227-1234. doi: 10.11862/CJIC.20240448

    16. [16]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    17. [17]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    18. [18]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    19. [19]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    20. [20]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

Metrics
  • PDF Downloads(0)
  • Abstract views(43)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return