Citation: Yuying JIANG, Jia LUO, Zhan GAO. Development status and prospects of solid oxide cell high entropy electrode catalysts[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(9): 1719-1730. doi: 10.11862/CJIC.20250124 shu

Development status and prospects of solid oxide cell high entropy electrode catalysts

  • Corresponding author: Zhan GAO, zhangao18@xjtu.edu.cn
  • Received Date: 13 April 2025
    Revised Date: 30 June 2025

Figures(6)

  • Solid oxide cells (SOCs), as efficient and clean energy conversion devices, enable reversible transformation between chemical and electrical energy, and hold strategic value in distributed power generation, industrial waste heat recovery, and low-carbon energy systems. However, conventional electrode materials face trade-offs between electrocatalytic activity and structural stability. Elemental segregation and interfacial degradation at high temperatures severely reduce efficiency and lifespan. In recent years, high-entropy engineering has offered new pathways for overcoming performance bottlenecks in electrode materials by leveraging high configurational entropy-induced effects: configurational entropy effect, lattice distortion effect, sluggish diffusion effect, and the cocktail effect. This review summarizes recent progress in high-entropy SOC electrodes and explains how the four major entropy-driven effects improve catalytic activity, ion/electron transport, and long-term structural stability. Building on this foundation, this review identifies multi-principal element design as the key to synchronizing interfacial reaction kinetics and thermo-mechanical durability. This review systematically consolidates recent advances in high-entropy electrode materials for enhancing critical SOC performance, highlighting their potential in improving electrode activity, poisoning resistance, and thermal stability. Core challenges and emerging opportunities for future research are also discussed.
  • 加载中
    1. [1]

      GAO Z, MOGNI L V, MILLER E C, RAILSBACK J G, BARNETT S A. A perspective on low-temperature solid oxide fuel cells[J]. Energy Environ. Sci., 2016, 9: 1602-1644  doi: 10.1039/C5EE03858H

    2. [2]

      WANG J Y, GAO H, ZHAO K P, WULIJI H X, ZHAO B R, MA J, CHEN X G, ZHANG J W, SUI Y P, WEI T R, ZHU M, SHI X. Atomic to nanoscale chemical fluctuations: The catalyst for enhanced thermoelectric performance in high-entropy materials[J]. Sci. Adv., 2025, 11(9): eadt6298  doi: 10.1126/sciadv.adt6298

    3. [3]

      MA Y J, MA Y, WANG Q S, SCHWEIDLER S, BOTROS M, FU T T, HAHN H, BREZESINSKI T, BREITUNG B. High-entropy energy materials: Challenges and new opportunities[J]. Energy Environ. Sci., 2021, 14: 2883-2905  doi: 10.1039/D1EE00505G

    4. [4]

      GAO H T, ZHAO K P, WULIJI H, ZHU M, XU B B, LIN H, FEI L T, ZHANG H Y, ZHOU Z Y, LEI J D, CHEN H Y, WAN S, WEI T R, SHI X. Adaptable sublattice stabilized high-entropy materials with superior thermoelectric performance[J]. Energy Environ. Sci., 2023, 16: 6046-6057  doi: 10.1039/D3EE02788K

    5. [5]

      FAYE O, SZPUNAR J, EDUOK U. A critical review on the current technologies for the generation, storage, and transportation of hydrogen[J]. Int. J. Hydrog. Energy, 2022, 47: 13771-13802  doi: 10.1016/j.ijhydene.2022.02.112

    6. [6]

      BAIUTTI F, CHIABRERA F, ANZENGRUBER M, KREKA K, SIRVENT J, YEDRA L, BUZI F, LIEDKE M O, CAVALLARO A, ZUAZO A C, ESTRADE S, BUTTERLING M, HIRSCHMANN E, WAGNER A, AGUADERO A, PEIRO F, TARANCON A. Leveraging grain boundary effects for nanostructured electrode layers in symmetric solid oxide fuel cells[J]. Adv. Mater. Interfaces, 2025, 12: 2400872  doi: 10.1002/admi.202400872

    7. [7]

      WANG S, JIANG W, ZHENG Y F, XIAO G P. Engineering a novel interface structure on La0.75Sr0.25Cr0.5Mn0.5O3-δ-Gd0.1Ce0.9O2-δ fuel electrode with excellent electrochemical performance and sulfur tolerance for electrocatalytic CO2 reduction[J]. J. Power Sources, 2025, 627: 235852  doi: 10.1016/j.jpowsour.2024.235852

    8. [8]

      SONG X, JIANG Y Y, DANG X Y, GAO Z. In situ exsolved mangosteen-type nanoalloy clusters and engineered heterogeneous interfaces for high-performance fuel-flexible solid oxide cells[J]. Small, 2025;21(14): 2412437  doi: 10.1002/smll.202412437

    9. [9]

      CHEN H J, GUO Z, ZHANG L A, LI Y F, LI F, ZHANG Y P, CHEN Y, WANG X W, YU B, SHI J M, LIU J, YANG C H, CHENG S, CHEN Y, LIU M L. Improving the electrocatalytic activity and durability of the La0. 6Sr0.4Co0.2Fe0.8O3-δ cathode by surface modification[J]. ACS Appl. Mater. Interfaces, 2018, 10: 39785-39793  doi: 10.1021/acsami.8b14693

    10. [10]

      ZHANG W J, GAO Y, ZHANG J K, ZHAO A, LIU F S, ZHENG K, JIN F J, LING Y H. Designing highly active and CO2 tolerant heterostructure electrode materials by a facile A-site deficiency strategy in Pr1-xBaCo2O5+δ double perovskite[J]. J. Power Sources, 2024, 602: 234344  doi: 10.1016/j.jpowsour.2024.234344

    11. [11]

      ZHANG S L, WANG H, LU M Y, ZHANG A P, MOGNI L V, LIU Q, LI C X, LI C J, BARNETT S A. Cobalt-substituted SrTi0.3Fe0.7O3-δ: A stable high-performance oxygen electrode material for intermediate-temperature solid oxide electrochemical cells[J]. Energy Environ. Sci., 2018, 11: 1870-1879  doi: 10.1039/C8EE00449H

    12. [12]

      DOS SANTOS-GOMEZ L, ZAMUDIO-GARCIA J, PORRAS-VAZQUEZ J M, LOSILLA E R, MARRERO-LOPEZ D. Recent progress in nanostructured electrodes for solid oxide fuel cells deposited by spray pyrolysis[J]. J. Power Sources, 2021, 507: 230277  doi: 10.1016/j.jpowsour.2021.230277

    13. [13]

      CHOI Y, CHO H J, KIM J, KANG J Y, SEO J, KIM J H, JEONG S J, LIM D K, KIM I D, JUNG W. Nanofiber composites as highly active and robust anodes for direct-hydrocarbon solid oxide fuel cells[J]. ACS Nano, 2022, 16: 14517-14526  doi: 10.1021/acsnano.2c04927

    14. [14]

      HE D B, GONG Y Z, NI J P, NI C S. A stable chromite anode for SOFC with Ce/Ni exsolution for simultaneous electricity generation and CH4 reforming[J]. Sep. Purif. Technol., 2023, 315: 123739  doi: 10.1016/j.seppur.2023.123739

    15. [15]

      ZHANG W, WEI J L, ZHOU Y X, MAO Y Z, ALONSO J A, LÓPEZ C A, FERNÁNDEZ-DIAZ M T, SONG Y P, MA X L, SUN C W. Co-Ru bimetallic nanoparticles/oxygen deficient perovskite oxides as a highly efficient anode catalyst layer for direct-methane solid oxide fuel cells[J]. Chem. Eng. J., 2024, 498: 155502  doi: 10.1016/j.cej.2024.155502

    16. [16]

      KOUSI K, TANG C Y, METCALFE I S, NEAGU D. Emergence and future of exsolved materials[J]. Small, 2021, 17(21): 2006479  doi: 10.1002/smll.202006479

    17. [17]

      KWON O, SENGODAN S, KIM K, KIM G, JEONG H Y, SHIN J, JU Y W, HAN J W, KIM G. Exsolution trends and co-segregation aspects of self-grown catalyst nanoparticles in perovskites[J]. Nat. Commun., 2017, 8: 15967  doi: 10.1038/ncomms15967

    18. [18]

      LIU S X, WU D, KONG M H, WANG W, XIE L, HE J Q. High-entropy thermoelectric materials: Advances, challenges, and future opportunities[J]. ACS Energy Lett., 2025, 10: 925-934  doi: 10.1021/acsenergylett.4c03369

    19. [19]

      BAHOUT M M, PRAVEEN B, DORCET V, LA SALLE A L, PAOFAI S, HANSEN T C. In situ exsolution of Ni particles on the PrBaMn2O5 SOFC electrode material monitored by high temperature neutron powder diffraction under hydrogen[J]. J. Mater. Chem. A, 2020, 8: 3590-3597  doi: 10.1039/C9TA10159D

    20. [20]

      WANG J K, FU L, YANG J M, LIU Z R, ZHOU J, MYUNG J H, WU K. In situ growth of Ru/RuO2 nanoparticle-modified (PrBa)0.95Mn1.9 Ru0.1O5+δ as a high-performance electrode for symmetrical solid oxide fuel cells[J]. Energy Fuels, 2022, 36: 12236-12244  doi: 10.1021/acs.energyfuels.2c02338

    21. [21]

      SUN Y F, ZHANG Y Q, HUA B, BEHNAMIAN Y, LI J, CUI S H, LI J H, LUO J L. Molybdenum doped Pr0.5Ba0.5MnO3-δ (Mo-PBMO) double perovskite as a potential solid oxide fuel cell anode material[J]. J. Power Sources, 2016, 301: 237-241  doi: 10.1016/j.jpowsour.2015.09.127

    22. [22]

      SUN Y F, ZHANG Y Q, CHEN J, LI J H, ZHU Y T, ZENG Y, AMIRKHIZ B, LI S, HUA B, LUO J L. New opportunity for in situ exsolution of metallic nanoparticles on perovskite parent[J]. Nano Lett., 2016, 16: 5303-5309  doi: 10.1021/acs.nanolett.6b02757

    23. [23]

      ADIJANTO L, PADMANABHAN V B, KÜNGAS R, GORTE R J, VOHS J M. Transition metal-doped rare earth vanadates: A regenerable catalytic material for SOFC anodes[J]. J. Mater. Chem., 2012, 22: 11396-11402  doi: 10.1039/c2jm31774e

    24. [24]

      JIANG Y Y, LIU J M, CHENG B, DANG X Y, SU H Q, HUA Y N, GAO Z. In situ exsolved NiFe nanoparticles in Ni-doped Sr0.9Ti0.3 Fe0.63Ni0.07O3-δ anode with a three-dimensionally ordered macroporous structure for solid oxide fuel cells fueled by alkanes[J]. Chem. Eng. J., 2024, 491: 151865  doi: 10.1016/j.cej.2024.151865

    25. [25]

      ZHANG Y, CHEN B, GUAN D Q, XU M G, RAN R, NI M, ZHOU W, O′HAYRE R, SHAO Z P. Thermal-expansion offset for high-performance fuel cell cathodes[J]. Nature, 2021, 591: 246-251  doi: 10.1038/s41586-021-03264-1

    26. [26]

      YAO C G, XIA B X, ZHANG H X, WANG H C, ZHANG W W, GUO Q H, JIANG Y B, LANG X S, CAI K D. Fluoride-driven modulation of oxygen vacancies and surface stability in cobalt-based perovskite as a high-performance cathode for solid oxide fuel cells[J]. Chem. Eng. J., 2025, 505: 159359  doi: 10.1016/j.cej.2025.159359

    27. [27]

      TUN K S, GUPTA M. Microstructural evolution in MgAlLiZnCaY and MgAlLiZnCaCu multicomponent high entropy alloys[J]. Mater. Sci. Forum, 2018, 928: 183-187  doi: 10.4028/www.scientific.net/MSF.928.183

    28. [28]

      JHU P S, CHANG C W, CHENG C C, TING Y C, LIN T Y, YEN F Y, CHEN P W, LU S Y. Non-precious high entropy alloys and highly alkali-resistant composite membranes based high performance anion exchange membrane water electrolyzers[J]. Nano Energy, 2024, 126: 109703  doi: 10.1016/j.nanoen.2024.109703

    29. [29]

      HSU W L, TSAI C W, YEH A C, YEH J W. Clarifying the four core effects of high-entropy materials[J]. Nat. Rev. Chem., 2024, 8: 471-485  doi: 10.1038/s41570-024-00602-5

    30. [30]

      DABROWA J, OLSZEWSKA A, FALKENSTEIN A, SCHWAB C, SZYMCZAK M, ZAJUSZ M, MOZDZIERZ M, MIKULA A, ZIELINSKA K, BERENT K, CZEPPE T, MARTIN M, SWIERCZEK K. An innovative approach to design SOFC air electrode materials: High entropy La1-xSrx(Co, Cr, Fe, Mn, Ni)O3-δ (x=0, 0.1, 0.2, 0.3) perovskites synthesized by the sol-gel method[J]. J. Mater. Chem. A, 2020, 8: 24455-24468  doi: 10.1039/D0TA06356H

    31. [31]

      YANG Q, WANG G Q, WU H D, BESHIWORK B A, TIAN D, ZHU S Y, YANG Y, LU X Y, DING Y Z, LING Y H, CHEN Y H, LIN B. A high-entropy perovskite cathode for solid oxide fuel cells[J]. J. Alloy. Compd., 2021, 872: 159633  doi: 10.1016/j.jallcom.2021.159633

    32. [32]

      LIN Z, MA B, CHEN Z H, CHENG L, ZHOU Y K. Exploring B-site high-entropy configuration of spinel oxides for improved cathode performance in solid oxide fuel cells[J]. J. Eur. Ceram. Soc., 2024, 44: 2233-2241  doi: 10.1016/j.jeurceramsoc.2023.11.004

    33. [33]

      FU X M, LU S Q, MENG X W, SUN C X, WEI M B, JIANG H P, GONG W J. High-entropy cobalt-free perovskite as a high-performing nanofiber cathode for solid oxide fuel cells[J]. J. Mater. Chem. A, 2024, 12: 27452-27463  doi: 10.1039/D4TA01803F

    34. [34]

      XIA Z T, ZHANG Y X, XIONG X L, CUI J Z, LIU Z, XI S B, HU Z W, WANG J Q, ZHANG L J. Realizing B-site high-entropy air electrode for superior reversible solid oxide cells[J]. Appl. Catal. B‒ Environ. Energy, 2024, 357: 124314  doi: 10.1016/j.apcatb.2024.124314

    35. [35]

      LI X L, CHEN T, WANG C, SUN N, ZHANG G J, ZHOU Y C, WANG M, ZHU J, XU L, WANG S R. An active and stable high-entropy ruddlesden-popper type La1.4Sr0.6Co0.2Fe0.2Ni0.2Mn0.2Cu0.2Oδ oxygen electrode for reversible solid oxide cells[J]. Adv. Funct. Mater., 2024, 34(52): 2411216  doi: 10.1002/adfm.202411216

    36. [36]

      ZHU F, DU Z W, XU K, HE F, XU Y S, LIAO Y H, CHEN Y. Entropy and composition regulations of air electrodes enable efficient oxygen reduction and evolution reactions for reversible solid oxide cells[J]. Adv. Energy Mater., 2024, 14(37): 2401048

    37. [37]

      LI T Y, YAO Y G, HUANG Z N, XIE P F, LIU Z Y, YANG M H, GAO J L, ZENG K Z, BROZENA A H, PASTEL G, JIAO M L, DONG Q, DAI J Q, LI S K, ZONG H, CHI M F, LUO J, MO Y F, WANG G F, WANG C, SHAHBAZIAN-YASSAR R, HU L B. Denary oxide nanoparticles as highly stable catalysts for methane combustion[J]. Nat. Catal., 2021, 4: 62-70  doi: 10.1038/s41929-020-00554-1

    38. [38]

      LI M, SUN C, NI Q, SUN Z, LIU Y, LI Y, LI L, JIN H B, ZHAO Y J. High entropy enabling the reversible redox reaction of V4+/V5+ couple in NASICON-type sodium ion cathode[J]. Adv. Energy Mater., 2023, 13(12): 2203971  doi: 10.1002/aenm.202203971

    39. [39]

      SU G S, WANG Y J, MU J W, REN Y F, YUE P, JI W X, LIANG L W, HOU L R, CHEN M, YUAN C Z. Insights into tiny high-entropy doping promising efficient sodium storage of Na3V2(PO4)2O2F toward sodium-ion batteries[J]. Adv. Energy Mater., 2024, 15(11): 2403282

    40. [40]

      LUO J, LI X, YE Y J, ZHOU T, WU W L, LI H L, YANG Q, YAN H, ZENG J. Progressive fabrication of a Pt-based high-entropy-alloy catalyst toward highly efficient propane dehydrogenation[J]. Angew. Chem. ‒Int. Edit., 2025, 64(7): e202419093  doi: 10.1002/anie.202419093

    41. [41]

      ZHANG D, WANG Y, PENG Y H, LUO Y, LIU T, HE W, CHEN F L, DING M Y. Novel high-entropy perovskite-type symmetrical electrode for efficient and durable carbon dioxide reduction reaction[J]. Adv. Powder Mater., 2023, 2(4): 100129  doi: 10.1016/j.apmate.2023.100129

    42. [42]

      LUAN H W, SHAO Y, LI J F, MAO W L, HAN Z D, SHAO C, YAO K F. Phase stabilities of high entropy alloys[J]. Scr. Mater., 2020, 179: 40-44  doi: 10.1016/j.scriptamat.2019.12.041

    43. [43]

      SHEN L Y, DU Z H, ZHANG Y, DONG X, ZHAO H L. Medium-Entropy perovskites Sr(FeαTiβCoγMnζ)O3-δ as promising cathodes for intermediate temperature solid oxide fuel cell[J]. Appl. Catal. B‒ Environ. Energy, 2021, 295: 120264  doi: 10.1016/j.apcatb.2021.120264

    44. [44]

      LEE K X, HU B X, DUBEY P K, ANISUR M R, BELKO S, APHALE A N, SINGH P. High-entropy alloy anode for direct internal steam reforming of methane in SOFC[J]. Int. J. Hydrog. Energy, 2022, 47: 38372-38385  doi: 10.1016/j.ijhydene.2022.09.018

    45. [45]

      HU B X, LAU G, LEE K X, BELKO S, SINGH P, TUCKER M C. Ethanol-fueled metal supported solid oxide fuel cells with a high entropy alloy internal reforming catalyst[J]. J. Power Sources, 2023, 582: 233544  doi: 10.1016/j.jpowsour.2023.233544

    46. [46]

      ZHANG S S, GAO Y, NIU Q, ZHANG P F. Enhancing coke resistance of Ni-based spinel-type oxides by tuning the configurational entropy[J]. J. Catal., 2024, 440: 115819  doi: 10.1016/j.jcat.2024.115819

    47. [47]

      ZHU Y, ZHANG N, ZHANG W Y, GONG Y S, WANG R, WANG H W, JIN J, ZHAO L, HE B B. Probing metal/high-entropy perovskite heterointerfaces for efficient and sustainable CO2 electroreduction[J]. J. Mater. Chem. A, 2024, 12: 18182-18192  doi: 10.1039/D4TA02372B

    48. [48]

      WANG C, ZHU Y, LING Y H, GONG Y S, WANG R, WANG H W, JIN J, ZHAO L, HE B B. Atomistic insights into medium-entropy perovskites for efficient and robust CO2 electrolysis[J]. ACS Appl. Mater. Interfaces, 2023, 15: 45905-45914  doi: 10.1021/acsami.3c09913

    49. [49]

      TONG J, NI N, ZHOU B W, YANG C Q, REDDY K M, TU H Y, LIU Y S, TAN Z, XIANG L K, LI H Z, ZHOU X, ZHANG Y Y, LI Y X, ZHANG H C, ZHU L, HUANG Z. Toward high CO selectivity and oxidation resistance solid oxide electrolysis cell with high-entropy alloy[J]. ACS Catal., 2024, 14: 2897-2907  doi: 10.1021/acscatal.3c05972

    50. [50]

      SHI Y C, NI N, DING Q, ZHAO X F. Tailoring high-temperature stability and electrical conductivity of high entropy lanthanum manganite for solid oxide fuel cell cathodes[J]. J. Mater. Chem. A, 2022, 10: 2256-2270  doi: 10.1039/D1TA07275G

    51. [51]

      HAN X, LING Y H, YANG Y, WU Y J, GAO Y, WEI B, LV Z. Utilizing high entropy effects for developing chromium-tolerance cobalt-free cathode for solid oxide fuel cells[J]. Adv. Funct. Mater., 2023, 33(43): 2304728  doi: 10.1002/adfm.202304728

    52. [52]

      LIAO Y Q, HE Y, CUI X M, LIU L P. Elemental Fe conditioning for the synthesis of highly selective and stable high entropy catalysts for CO2 methanation[J]. Fuel, 2024, 355: 129494  doi: 10.1016/j.fuel.2023.129494

    53. [53]

      ZHANG M Y, YE J, GAO Y, DUAN X L, ZHAO J H, ZHANG S S, LU X Y, LUO K L, WANG Q Q, NIU Q, ZHANG P F, DAI S. General synthesis of high-entropy oxide nanofibers[J]. ACS Nano, 2024, 18: 1449-1463  doi: 10.1021/acsnano.3c07506

    54. [54]

      XU Y S, XU X, BI L. A high-entropy spinel ceramic oxide as the cathode for proton-conducting solid oxide fuel cells[J]. J. Adv. Ceram., 2022, 11: 794-804  doi: 10.1007/s40145-022-0573-7

    55. [55]

      DANG X Y, LI T H, JIANG Y Y, GAO Z, HUA Y N, SU H Q. High-performance Ti-doped strontium cobaltite perovskites as oxygen electrodes in solid oxide cells[J]. J. Power Sources, 2024, 603: 234448  doi: 10.1016/j.jpowsour.2024.234448

    56. [56]

      GONG J Y, HOU J. B-site high-entropy tailoring K2NiF4 oxide as an effective cathode for proton-conducting solid oxide fuel cells[J]. J. Mater. Sci. Technol., 2024, 186: 158-163  doi: 10.1016/j.jmst.2023.11.018

    57. [57]

      HE F, ZHU F, XU K, XU Y S, LIU D L, YANG G M, SASAKI K, CHOI Y M, CHEN Y. A highly oxygen reduction reaction active and CO2 durable high-entropy cathode for solid oxide fuel cells[J]. Appl. Catal. B‒Environ. Energy, 2024, 355: 124175  doi: 10.1016/j.apcatb.2024.124175

    58. [58]

      ZHU F, XU K, HE F, XU Y S, DU Z W, ZHANG H, ZENG D P, LIU Y, WANG H B, DING D, ZHOU Y C, CHEN Y. An active and contaminants-tolerant high-entropy electrode for ceramic fuel cells[J]. ACS Energy Lett., 2024, 9: 556-567  doi: 10.1021/acsenergylett.4c00037

    59. [59]

      ZOU J Y, TANG L, HE W E, ZHANG X H. High-entropy oxides: Pioneering the future of multifunctional materials[J]. ACS Nano, 2024, 18: 34492-34530  doi: 10.1021/acsnano.4c12538

    60. [60]

      PRABHAHARI V, PRAVEENA R, BABU K S. Novel spinel based high entropy oxide as electrode for symmetric SOFCs[J]. J. Alloy. Compd., 2024, 986: 174152  doi: 10.1016/j.jallcom.2024.174152

    61. [61]

      WANG Z M, TAN T, DU K, ZHANG Q M, LIU M L, YANG C H. A high-entropy layered perovskite coated with in situ exsolved core-shell CuFe@FeOx nanoparticles for efficient CO2 electrolysis[J]. Adv. Mater., 2024, 36(11): 2312119  doi: 10.1002/adma.202312119

    62. [62]

      LI Z P, GE Y F, XIAO Y H, DU M R, YANG F R, MA Y, LI Y, GAO D G, LI H B, WANG J H, WANG P. Fabrication and performance investigation of high entropy perovskite (Sr0.2Ba0.2Bi0.2 La0.2Pr0.2)FeO3 IT-SOFC cathode material[J]. J. Alloy. Compd., 2024, 989: 174357  doi: 10.1016/j.jallcom.2024.174357

    63. [63]

      ZHENG T, LI Z Y, WANG D G, PAN Z X, SUN H B, SONG T, ZHAO S K. Enhanced anti-chromium poisoning ability of high entropy La0.2Nd0.2Sm0.2Sr0.2Ba0.2Co0.2Fe0.8O3-δ cathodes for solid oxide fuel cells[J]. J. Alloy. Compd., 2024, 982: 173753  doi: 10.1016/j.jallcom.2024.173753

    64. [64]

      SALMAN M, SALEEM S, LING Y, KHAN M. Fe-based high-entropy perovskite oxide: A strategy to suppress Sr segregation and performance evaluation as an electrode material for SOFCs[J]. ACS Appl. Energy Mater., 2024, 7: 8648-8657  doi: 10.1021/acsaem.4c01614

    65. [65]

      YUAN M K, GAO Y, LIU L M, GAO J T, WANG Z, LI Y, HAO H R, HAO W T, LOU X T, LV Z, XU L L, WEI B. High entropy double perovskite cathodes with enhanced activity and operational stability for solid oxide fuel cells[J]. J. Eur. Ceram. Soc., 2024, 44: 3267-3276  doi: 10.1016/j.jeurceramsoc.2023.12.049

    66. [66]

      OSES C, TOHER C, CURTAROLO S. High-entropy ceramics[J]. Nat. Rev. Mater., 2020, 5: 295-309  doi: 10.1038/s41578-019-0170-8

    67. [67]

      XIAO M, LIU Z Q, DI H S, BAI Y S, YANG G M, MEDVEDEV D A, LUO Z X, WANG W, ZHOU W, RAN R, SHAO Z P. High-entropy materials for solid oxide cells: Synthesis, applications, and prospects[J]. J. Energy Chem., 2025, 104: 268-296  doi: 10.1016/j.jechem.2024.12.009

    68. [68]

      DABROWA J, STEPIEN A, SZYMCZAK M, ZAJUSZ M, CZAJA P, SWIERCZEK K. High-entropy approach to double perovskite cathode materials for solid oxide fuel cells: Is multicomponent occupancy in (La, Pr, Nd, Sm, Gd)BaCo2O5+δ affecting physicochemical and electrocatalytic properties?[J]. Front. Energy Res., 2022, 10: 899308  doi: 10.3389/fenrg.2022.899308

    69. [69]

      HAN X, YANG Y, FAN Y, NI H, GUO Y M, CHEN Y, OU X M, LING Y H. New approach to enhance Sr-free cathode performance by high-entropy multi-component transition metal coupling[J]. Ceram. Int., 2021, 47: 17383-17390  doi: 10.1016/j.ceramint.2021.03.052

    70. [70]

      ZHANG Z P, WANG H, LI X J, XU H Y, QI M L. CO2/Cr-tolerance and oxygen reduction reaction of novel high-entropy perovskite cathode for intermediate temperature solid oxide fuel cell[J]. Ceram. Int., 2024, 50: 11360-11369  doi: 10.1016/j.ceramint.2024.01.036

    71. [71]

      YAO C G, LIU W N, ZHANG H X, WANG H C, ZHANG W W, LANG X S, CAI K D. High-entropy perovskite (Pr1/6Nd1/6Sm1/6Ba1/6Sr1/6)6/7(Mn1/6Co)6/7O3-δ as a highly active and CO2 durable cathode for solid oxide fuel cells[J]. Appl. Catal. B‒ Environ. Energy, 2025, 363: 124789  doi: 10.1016/j.apcatb.2024.124789

    72. [72]

      GUO T M, DONG J B, CHEN Z P, RAO M M, LI M F, LI T, LING Y H. Enhanced compatibility and activity of high-entropy double perovskite cathode material for IT-SOFC[J]. J. Inorg. Mater., 2023, 38: 693-700  doi: 10.15541/jim20220551

    73. [73]

      YANG Y, BAO H, NI H, OU X M, WANG S R, LIN B, FENG P Z, LING Y H. A novel facile strategy to suppress Sr segregation for high-entropy stabilized La0.8Sr0.2MnO3-δ cathode[J]. J. Power Sources, 2021, 482: 228959  doi: 10.1016/j.jpowsour.2020.228959

    74. [74]

      WANG X T, ZHONG J Y, LI Z G, XIANG J L, HOU B X, TAN Z X, LIU L S, WANG C C. Chromium tolerance of high entropy BaO impregnated-(La0.2Pr0.2Sm0.2Gd0.2Nd0.2)Ba0.5Sr0.5Co1.5Fe0.5O5 (LPSGNBSCF) cathodes for solid oxide fuel cell[J]. J. Solid State Electrochem., 2024, 29: 1787-1800

    75. [75]

      LIN Z, MA B, CHEN Z H, ZHOU Y K. Nanostructured spinel high-entropy oxide (Fe0.2Mn0.2Co0.2Ni0.2Zn0.2)3O4 as a potential cathode for solid oxide fuel cells[J]. Ceram. Int., 2023, 49: 23057-23067  doi: 10.1016/j.ceramint.2023.04.131

    76. [76]

      SALMAN M, SALEEM S, LING Y H, KHAN M, GAO Y. Improved electrochemical performance of high-entropy La0.8Sr0.2FeO3-based IT-SOFC cathode[J]. Ceram. Int., 2024, 50: 39475-39484  doi: 10.1016/j.ceramint.2024.07.324

    77. [77]

      LIU D F, CHEN Z P, ZHANG W J, SUN M Y, JIN F J, LIU H M, OU X M, ZHENG K, LING Y H. One-pot fabrication of high-entropy heterostructure cathode materials with excellent anti-poisoning properties in solid oxide fuel cells[J]. J. Power Sources, 2025, 626: 235809  doi: 10.1016/j.jpowsour.2024.235809

    78. [78]

      LI Z Q, GUAN B, XIA F, NIE J Y, LI W Y, MA L, LI W, ZHOU L F, WANG Y, TIAN H C, LUO J, CHEN Y, FROST M, AN K, LIU X B. High-entropy perovskite as a high-performing chromium-tolerant cathode for solid oxide fuel cells[J]. ACS Appl. Mater. Interfaces, 2022, 14: 24363-24373  doi: 10.1021/acsami.2c03657

  • 加载中
    1. [1]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    2. [2]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    3. [3]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    4. [4]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    5. [5]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    6. [6]

      Yan XinYunnian GeZezhong LiQiaobao ZhangHuajun Tian . Research Progress on Modification Strategies of Organic Electrode Materials for Energy Storage Batteries. Acta Physico-Chimica Sinica, 2024, 40(2): 2303060-0. doi: 10.3866/PKU.WHXB202303060

    7. [7]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    8. [8]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    9. [9]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    10. [10]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    11. [11]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    12. [12]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    13. [13]

      Hongren RONGGexiang GAOZhiwei LIUKe ZHOULixin SUHao HUANGWenlong LIUQi LIU . High-performance supercapacitor based on 1D cobalt-based coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1183-1195. doi: 10.11862/CJIC.20250034

    14. [14]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    15. [15]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    16. [16]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    17. [17]

      Chenyue HuangHongfei ZhengNing QinCanpei WangLiguang WangJun Lu . Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies. Acta Physico-Chimica Sinica, 2024, 40(9): 2308051-0. doi: 10.3866/PKU.WHXB202308051

    18. [18]

      Kai PENGXinyi ZHAOZixi CHENXuhai ZHANGYuqiao ZENGJianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454

    19. [19]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    20. [20]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

Metrics
  • PDF Downloads(3)
  • Abstract views(189)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return