Citation: Xiaoyu YANG, Yejun ZHANG, Yu ZOU, Hongchao YANG, Jiang JIANG, Qiangbin WANG. Research progress of inorganic X-ray nanoscintillators[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(10): 1929-1952. doi: 10.11862/CJIC.20250122 shu

Research progress of inorganic X-ray nanoscintillators

Figures(13)

  • Inorganic X-ray nanoscintillators have attracted considerable attention from researchers due to their outstanding optical properties and solution processability, offering promising prospects for applications in flexible scintillating screens, bioimaging, disease theranostics, and related fields. This review highlights recent advancements in inorganic X-ray nanoscintillators, focusing on transition metal ion-doped nanocrystals, quantum dots, clusters, and nanoscale metal-organic framework scintillator materials, along with their scintillation mechanisms. Additionally, the paper reviews the latest achievements in applying inorganic nanoscintillators to areas such as detection, information storage, bioimaging, and therapy. Finally, future development directions are discussed, emphasizing their enormous potential in three-dimensional flexible detectors and near-infrared Ⅱ fluorescence imaging.
  • 加载中
    1. [1]

      XU S S, JIANG X L. X-ray wavelength standard[J]. Physics, 1974, 3(2): 108-112

    2. [2]

      RÖNTGEN W C. On a new kind of rays[J]. Science, 1896, 3(59): 227-231  doi: 10.1126/science.3.59.227

    3. [3]

      ZDESENKO Y G, AVIGNONE LⅡ F T, BRUDANIN V B, BRUDANIN, V B, DANEVICH F A, NAGORNY S S, SOLSKY I M, TRETYAK V I. Scintillation properties and radioactive contamination of CaWO4 crystal scintillators[J]. Nucl. Instrum. Methods Phys. Res. Sect. A‒Accel. Spectrom. Dect. Assoc. Equip., 2005, 538(1/2/3): 657-667

    4. [4]

      YASUDA K, USUDA S, GUNJI H. Simultaneous alpha, beta/gamma, and neutron counting with phoswich detectors by using a dual-parameter technique[J]. IEEE Trans. Nucl. Sci., 2001, 48(4): 1162-1164  doi: 10.1109/23.958743

    5. [5]

      McELHANEY S, RAMSEY J, BAUER M, CHILES M. A ruggedized ZnS(Ag)/epoxy alpha scintillation detector[J]. Nucl. Instrum. Methods Phys. Res. Sect. A‒Accel. Spectrom. Dect. Assoc. Equip., 1990, 299(1/2/3): 111-114

    6. [6]

      SHEPHERD J A, SOBOTTKA S E, WILLIAMS M B. Performance and fabrication of thin film NaI(Tl) scintillators for use on imaging photomultiplier tubes[J]. IEEE Trans. Nucl. Sci., 1993, 40(4): 413-416  doi: 10.1109/23.256591

    7. [7]

      KUBOTA S, SHIRAISHI F, TAKAMI Y. Decay curves of NaI(Tl) scintillators with different Tl+ concentrations under excitation of electrons, alpha particles and fission fragments[J]. J. Phys. Soc. Jpn., 1999, 68(1): 291-297  doi: 10.1143/JPSJ.68.291

    8. [8]

      WANG Z T, HAUSER N, SINGER G, TRIPPEL M, KUBIK-HUCH R A, SCHNEIDER C W, STAMPANONI M. Non-invasive classification of microcalcifications with phase-contrast X-ray mammography[J]. Nat. Commun., 2014, 5: 3797  doi: 10.1038/ncomms4797

    9. [9]

      WANG G Y, LIU X H, SHEN J, WANG C D, LI Z H, YE L S, WU X W, CHEN T, WANG K, ZHANG X, ZHOU Z G, YANG J, SANG Y, DENG R Y, LIANG W H, YU T, GAO M, WANG J, YANG Z H, CAI H M, LU G M, ZHANG L Y, YANG L, XU W Q, WANG W, OLVERA A, ZIYAR I, ZHANG C, LI O L, LIAO W H, LIU J, CHEN W, CHEN W, SHI J C, ZHENG L H, ZHANG L J, YAN Z H, ZOU X G, LIN G P, CAO G Q, LAU L L, MO L, LIANG Y, ROBERTS M, SALA E, SCHöNLIEB C B, FOK M, LAU J Y N, XU T, HE J X, ZHANG K, LI W M, LIN T X. A deep-learning pipeline for the diagnosis and discrimination of viral, non-viral and COVID-19 pneumonia from chest X-ray images[J]. Nat. Biomed. Eng., 2021, 5(6): 509-521  doi: 10.1038/s41551-021-00704-1

    10. [10]

      MOMOSE A, TAKEDA T, ITAI Y, HIRANO K. Phase-contrast X-ray computed tomography for observing biological soft tissues[J]. Nat. Med., 1996, 2(4): 473-475  doi: 10.1038/nm0496-473

    11. [11]

      RABIN O, MANUEL PEREZ J, GRIMM J, WOJTKIEWICZ G, WEISSLEDER R. An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles[J]. Nat. Mater., 2006, 5(2): 118-122  doi: 10.1038/nmat1571

    12. [12]

      HOLL I, LORENZ E, MAGERAS G. A measurement of the light yield of common inorganic scintillators[J]. IEEE Trans. Nucl. Sci., 1988, 35(1): 105-109  doi: 10.1109/23.12684

    13. [13]

      GRABMAIER B C. Crystal scintillators[J]. IEEE Trans. Nucl. Sci., 1984, 31(1): 372-376  doi: 10.1109/TNS.1984.4333280

    14. [14]

      MELCHER C L, SCHWEITZER J S. Cerium-doped lutetium oxyorthosilicate‒A fast, efficient new scintillator[J]. IEEE Trans. Nucl. Sci., 1992, 39(4): 502-505  doi: 10.1109/23.159655

    15. [15]

      WEBER M J, MONCHAMP R R. Luminescence of Bi4Ge3O12: Spectral and decay properties[J]. J. Appl. Phys., 1973, 44(12): 5495-5499  doi: 10.1063/1.1662183

    16. [16]

      LAVAL M, MOSZYŃSKI M, ALLEMAND R, CORMORECHE E, GUINET P, ODRU R, VACHER J. Barium fluoride-inorganic scintillator for subnanosecond timing[J]. Nucl. Instrum. Methods Phys. Res., 1983, 206(1/2): 169-176

    17. [17]

      KIM Y K, KIM H K, CHO G, KIM D K. Effect of yttria substitution on the light output of (Gd, Y)2O3∶Eu ceramic scintillator[J]. Nucl. Instrum. Methods Phys. Res. Sect. B‒Beam Interact. Mater. Atoms, 2004, 225(3): 392-396  doi: 10.1016/j.nimb.2004.03.087

    18. [18]

      CHEN Q W, SHI Y, SHI J L. The latest progress in ceramic scintillators research[J]. Journal Materials Science and Engineering, 2005, 23(1): 128-132

    19. [19]

      KAMADA K, ENDO T, TSUTUMI K, YANAGIDA T, FUJIMOTO Y, FUKABORI A, YOSHIKAWA A, PEJCHAL J, NIKL M. Composition engineering in cerium-doped (Lu, Gd)3(Ga, Al)5O12 single-crystal scintillators[J]. Cryst. Growth Des., 2011, 11(10): 4484-4490  doi: 10.1021/cg200694a

    20. [20]

      JIANG M Y, DENG Z M, ZENG S J, HAO J H. Recent progress on lanthanide scintillators for soft X-ray-triggered bioimaging and deep-tissue theranostics[J]. View, 2021, 2(4): 20200122  doi: 10.1002/VIW.20200122

    21. [21]

      RODNYI P A, DORENBOS P, EIJK C V. Energy loss in inorganic scintillators[J]. Phys. Status Solidi B, 1995, 18715-29

    22. [22]

      WEBER M J. Scintillation: Mechanisms and new crystals[J]. Nucl. Instrum. Methods Phys. Res. Sect. A‒Accel. Spectrom. Dect. Assoc. Equip., 2004, 527(1): 9-14

    23. [23]

      ZHOU Y, CHEN J, BAKR O M, MOHAMMED O F. Metal halide perovskites for X-ray imaging scintillators and detectors[J]. ACS Energy Lett., 2021, 6(2): 739-768  doi: 10.1021/acsenergylett.0c02430

    24. [24]

      MADDALENA F, TJAHJANA L, XIE A, ARRAMEL, ZENG S W, WANG H, COQUET P, DROZDOWSKI W, DUJARDIN C, DANG C. Inorganic, organic, and perovskite halides with nanotechnology for high-light yield X- and γ-ray scintillators[J]. Crystals, 2019, 9(2): 88  doi: 10.3390/cryst9020088

    25. [25]

      NIKL M. Scintillation detectors for X-rays[J]. Meas. Sci. Technol., 2006, 17(4): R37  doi: 10.1088/0957-0233/17/4/R01

    26. [26]

      CHEN H Y, MOORE T, QI B, COLVIN D C, JELEN E K, HITCHCOCK D A, HE J, MEFFORD O T, GORE J C, ALEXIS F, ANKER J N. Monitoring pH-triggered drug release from radioluminescent nanocapsules with X-ray excited optical luminescence[J]. ACS Nano, 2013, 7(2): 1178-1187  doi: 10.1021/nn304369m

    27. [27]

      MOORE T L, WANG F L, CHEN H Y, GRIMES S W, ANKER J N, ALEXIS F. Polymer-coated radioluminescent nanoparticles for quantitative imaging of drug delivery[J]. Adv. Funct. Mater., 2014, 24(37): 5815-5823  doi: 10.1002/adfm.201400949

    28. [28]

      YOROV K E, NEMATULLOEV S, SAIDZHONOV B M, SKOROTETCKY M S, KARLUK A A, HASANOV B E, MIR W J, SHEIKH T, GUTIÉRREZ ARZALUZ L, PHIELEPEIT M E M, ASHRAF N, BLICK R H, MOHAMMED O F, BAYINDIR M, BAKR O M. Controlled synthesis of terbium-doped colloidal Gd2O2S nanoplatelets enables high-performance X-ray scintillators[J]. ACS Nano, 2024, 18(31): 20111-20122  doi: 10.1021/acsnano.4c01652

    29. [29]

      SUN C, PRATX G, CARPENTER C M, LIU H G, CHENG Z, GAMBHIR S S, XING L. Synthesis and radioluminescence of pegylated Eu3+-doped nanophosphors as bioimaging probes[J]. Adv. Mater., 2011, 23(24): 201100919

    30. [30]

      SUDHEENDRA L, DAS G K, LI C Q, STARK D, CENA J, CHERRY S, KENNEDY I M. NaGdF4∶Eu3+ nanoparticles for enhanced X-ray excited optical imaging[J]. Chem. Mater., 2014, 26(5): 1881-1888  doi: 10.1021/cm404044n

    31. [31]

      NACZYNSKI D J, SUN C, TÜRKCAN S, JENKINS C, KOH A L, IKEDA D, PRATX G, XING L. X-ray-induced shortwave infrared biomedical imaging using rare-earth nanoprobes[J]. Nano Lett., 2015, 15(1): 96-102  doi: 10.1021/nl504123r

    32. [32]

      LIANG H Y, HONG Z Z, LI S H, SONG X R, ZHANG D, CHEN Q S, LI J, YANG H H. An activatable X-ray scintillating luminescent nanoprobe for early diagnosis and progression monitoring of thrombosis in live rat[J]. Adv. Funct. Mater., 2020, 31(5): 2006353

    33. [33]

      HE L R, WANG L Y, YU X J, TANG Y Z, JIANG Z, YANG G L, LIU Z, LI W W. Full-course NIR-Ⅱ imaging-navigated fractionated photodynamic therapy of bladder tumours with X-ray-activated nanotransducers[J]. Nat. Commun., 2024, 15: 8240  doi: 10.1038/s41467-024-52607-9

    34. [34]

      CUAU L, AKL P, GAUTHERON A, HOUMEAU A, CHAPUT F, YAROMINA A, DUBOIS L, LAMBIN P, KARPATI S, PAROLA S, REZAEIFAR B, LANGLOIS J B, SI-MOHAMED S A, MONTCEL B, DOUEK P, LEROUGE F. Surface modification effect on contrast agent efficiency for X-ray based spectral photon-counting scanner/luminescence imaging: From fundamental study to in vivo proof of concept[J]. Nanoscale, 2024, 16(6): 2931-2944  doi: 10.1039/D3NR03710J

    35. [35]

      LI Y, GECEVICIUS M, QIU J. Long persistent phosphors-from fundamentals to applications[J]. Chem. Soc. Rev., 2016, 45(8): 2090-2136  doi: 10.1039/C5CS00582E

    36. [36]

      ZHANG L W, SHEN R C, TAN J, YUAN Q. Influence of doped ions on persistent luminescence materials: A review[J]. Chin. J. Struct. Chem, 2022, 41(2): 2202148-2202158

    37. [37]

      ZHENG B, FAN J, CHEN B, QIN X, WANG J, WANG F, DENG R, LIU X. Rare-earth doping in nanostructured inorganic materials[J]. Chem. Rev., 2022, 122(6): 5519-5603  doi: 10.1021/acs.chemrev.1c00644

    38. [38]

      COOPER D R, CAPOBIANCO J A, SEUNTJENS J. Radioluminescence studies of colloidal oleate-capped β-Na(Gd, Lu)F4∶Ln3+ nanoparticles (Ln=Ce, Eu, Tb)[J]. Nanoscale, 2018, 10(16): 7821-7832  doi: 10.1039/C8NR01262H

    39. [39]

      OU X Y, QIN X, HUANG B L, ZAN J, WU Q X, HONG Z Z, XIE L L, BIAN H Y, YI Z G, CHEN X F, WU Y M, SONG X R, LI J, CHEN Q S, YANG H H, LIU X G. High-resolution X-ray luminescence extension imaging[J]. Nature, 2021, 590(7846): 410-415  doi: 10.1038/s41586-021-03251-6

    40. [40]

      PEI P, CHEN Y, SUN C X, FAN Y, YANG Y M, LIU X, LU L F, ZHAO M Y, ZHANG H X, ZHAO D Y, LIU X G, ZHANG F. X-ray-activated persistent luminescence nanomaterials for NIR-Ⅱ imaging[J]. Nat. Nanotechnol., 2021, 16(9): 1011-1018  doi: 10.1038/s41565-021-00922-3

    41. [41]

      ZHUANG Y X, CHEN D R, CHEN W J, ZHANG W X, SU X, DENG R R, AN Z F, CHEN H M, XIE R J. X-ray-charged bright persistent luminescence in NaYF4∶Ln3+@NaYF4 nanoparticles for multidimensional optical information storage[J]. Light‒Sci. Appl., 2021, 10: 132

    42. [42]

      LEI L, WANG Y B, XU W X, YE R G, HUA Y J, DENG D G, CHEN L, PRASAD P N, XU S Q. Manipulation of time-dependent multicolour evolution of X-ray excited afterglow in lanthanide-doped fluoride nanoparticles[J]. Nat. Commun., 2022, 13: 5739  doi: 10.1038/s41467-022-33489-1

    43. [43]

      XIE F, CHEN D X, ZHANG Y, LV X L, CHEN X, SUN K N, LIANG Y J. Colloidal KLu3F10∶Tb3+ persistent luminescence nanocrystal based flexible detectors for 3D X-ray imaging[J]. J. Mater. Chem. C, 2023, 11(47): 16772-16781  doi: 10.1039/D3TC03409G

    44. [44]

      ZOU H R, ZHU W J, ZHAO J T, ZHOU S, XU S Q, LEI L. Sub-10 nm lanthanide-doped Lu6O5F8 nanoscintillators for real-time high-resolution dynamic 3D X-ray imaging[J]. Adv. Funct. Mater., 2024, 34(49): 2409156  doi: 10.1002/adfm.202409156

    45. [45]

      CHEN H M, WANG G D, CHUANG Y J, ZHEN Z P, CHEN X Y, BIDDINGER P, HAO Z L, LIU F, SHEN B Z, PAN Z W, XIE J. Nanoscintillator-mediated X-ray inducible photodynamic therapy for in vivo cancer treatment[J]. Nano Lett., 2015, 15(4): 2249-2256  doi: 10.1021/nl504044p

    46. [46]

      SONG L, LIN X H, SONG X R, CHEN S, CHEN X F, LI J, YANG H H. Repeatable deep-tissue activation of persistent luminescent nanoparticles by soft X-ray for high sensitivity long-term in vivo bioimaging[J]. Nanoscale, 2017, 9(8): 2718-2722  doi: 10.1039/C6NR09553D

    47. [47]

      GUO T, LIN Y, ZHANG W J, HONG J S, LIN R H, WU X P, LI J, LU C H, YANG H H. High-efficiency X-ray luminescence in Eu3+-activated tungstate nanoprobes for optical imaging through energy transfer sensitization[J]. Nanoscale, 2018, 10(4): 1607-1612  doi: 10.1039/C7NR06405E

    48. [48]

      ESPINOZA S, JUESTEL T, HAASE M. Colloidal LaPO4∶Gd3+ nanocrystals: X-ray induced single line UV emission[J]. Nanoscale, 2018, 10(47): 22533-22540  doi: 10.1039/C8NR06867D

    49. [49]

      BEKE D, NARDI M V, BORTEL G, TIMPEL M, CZIGÁNY Z, PASQUALI L, CHIAPPINI A, BAIS G, RUDOLF M, ZALKA D, BIGI F, ROSSI F, BENCS L, PEKKER A, MÁRKUS B G, SALVIATI G, SADDOW S E, KAMARÁS K, SIMON F, GALI A. Enhancement of X-ray-excited red luminescence of chromium-doped zinc gallate via ultrasmall silicon carbide nanocrystals[J]. Chem. Mater., 2021, 33(7): 2457-2465  doi: 10.1021/acs.chemmater.0c04671

    50. [50]

      SHRIVASTAVA N, GUFFIE J, MOORE T L, GUZELTURK B, KUMBHAR A S, WEN J G, LUO Z P. Surface-doped zinc gallate colloidal nanoparticles exhibit pH-dependent radioluminescence with enhancement in acidic media[J]. Nano Lett., 2023, 23(14): 6482-6488  doi: 10.1021/acs.nanolett.3c01363

    51. [51]

      XUE Z L, LI X L, LI Y B, JIANG M Y, LIU H N, ZENG S J, HAO J H. X-ray-activated near-infrared persistent luminescent probe for deep-tissue and renewable in vivo bioimaging[J]. ACS Appl. Mater. Interfaces, 2017, 9(27): 22132-22142  doi: 10.1021/acsami.7b03802

    52. [52]

      CHEN Z Z, WANG L C, MANOHARAN D, LEE C L, WU L C, HUANG W T, HUANG E Y, SU C H, SHEU H S, YEH C S. Low dose of X-ray-excited long-lasting luminescent concave nanocubes in highly passive targeting deep-seated hepatic tumors[J]. Adv. Mater., 2019, 31(49): 1905087  doi: 10.1002/adma.201905087

    53. [53]

      LIU B M, ZOU R, LOU S Q, GAO Y F, MA L, WONG K L, WANG J. Low-dose X-ray-stimulated LaGaO3∶Sb, Cr near-infrared persistent luminescence nanoparticles for deep-tissue and renewable in vivo bioimaging[J]. Chem. Eng. J., 2021, 404127133

    54. [54]

      YOROV K E, MIR W J, SONG X, GUTIÉRREZ ARZALUZ L, NAPHADE R, NEMATULLOEV S, CHEN C, HUANG R W, SHAO B Y, HASANOV B E, HAN Y, MOHAMMED O F, BAKR O M. Mn4+-doped fluoride nanocrystals enable high-resolution red-emitting X-ray imaging screens[J]. ACS Mater. Lett., 2022, 4(11): 2273-2281  doi: 10.1021/acsmaterialslett.2c00746

    55. [55]

      BAWENDI M G, STEIGERWALD M L, BRUS L E. The quantum mechanics of larger semiconductor clusters ("quantum dots")[J]. Annu. Rev. Phys. Chem., 1990, 41(41): 477-496

    56. [56]

      XU G X, ZENG S W, ZHANG B T, SWIHART M T, YONG K T, PRASAD P N. New generation cadmium-free quantum dots for biophotonics and nanomedicine[J]. Chem. Rev., 2016, 116(19): 12234-12327  doi: 10.1021/acs.chemrev.6b00290

    57. [57]

      WEGNER K D, HILDEBRANDT N. Quantum dots: Bright and versatile in vitro and in vivo fluorescence imaging biosensors[J]. Chem. Soc. Rev., 2015, 44(14): 4792-4834  doi: 10.1039/C4CS00532E

    58. [58]

      MARTYNENKO I V, LITVIN A P, PURCELL MILTON F, BARANOV A V, FEDOROV A V, GUN'KO Y K. Application of semiconductor quantum dots in bioimaging and biosensing[J]. J. Mater. Chem. B, 2017, 5(33): 6701-6727  doi: 10.1039/C7TB01425B

    59. [59]

      YAO J, LI L, LI P F, YANG M. Quantum dots: From fluorescence to chemiluminescence, bioluminescence, electrochemiluminescence, and electrochemistry[J]. Nanoscale, 2017, 9(36): 13364-13383  doi: 10.1039/C7NR05233B

    60. [60]

      KANG Z T, ZHANG Y L, MENKARA H, WAGNER B K, SUMMERS C J, LAWRENCE W, NAGARKAR V. CdTe quantum dots and polymer nanocomposites for X-ray scintillation and imaging[J]. Appl. Phys. Lett., 2011, 98(18): 181914  doi: 10.1063/1.3589366

    61. [61]

      HOSSU M, LIU Z X, YAO M Z, MA L, CHEN W. X-ray luminescence of CdTe quantum dots in LaF3∶Ce/CdTe nanocomposites[J]. Appl. Phys. Lett., 2012, 100(1): 103104

    62. [62]

      GUIDELLI E J, LIGNOS I, YOO J J, LUSARDI M, BAWENDI M G, BAFFA O, JENSEN K F. Mechanistic insights and controlled synthesis of radioluminescent ZnSe quantum dots using a microfluidic reactor[J]. Chem. Mater., 2018, 30(23): 8562-8570  doi: 10.1021/acs.chemmater.8b03587

    63. [63]

      CARULLI F, COVA F, GIRONI L, MEINARDI F, VEDDA A, BROVELLI S. Stokes shift engineered Mn∶CdZnS/ZnS nanocrystals as reabsorption-free nanoscintillators in high loading polymer composites[J]. Adv. Opt. Mater., 2022, 10(13): 202200419

    64. [64]

      FANG Z H, TANG H T, YANG Z, ZHANG H, PENG Q P, YU X, ZHOU D C, QIU J B, XU X H. Transparent medium embedded with CdS quantum dots for X-ray imaging[J]. Adv. Opt. Mater., 2021, 9(24): 2101607  doi: 10.1002/adom.202101607

    65. [65]

      CHEN Q S, WU J, OU X Y, HUANG B L, ALMUTLAQ J, ZHUMEKENOV A A, GUAN X W, HAN S Y, LIANG L L, YI Z G, LI J, XIE X J, WANG Y, LI Y, FAN D Y, TEH D B L, ALL A H, MOHAMMED O F, BAKR O M, WU T, BETTINELLI M, YANG H H, HUANG W, LIU X G. All-inorganic perovskite nanocrystal scintillators[J]. Nature, 2018, 561(7721): 88-93  doi: 10.1038/s41586-018-0451-1

    66. [66]

      HEO J H, SHIN D H, PARK J K, KIM D H, LEE S J, IM S H. High-performance next-generation perovskite nanocrystal scintillator for nondestructive X-ray imaging[J]. Adv. Mater., 2018, 30(40): 1801743  doi: 10.1002/adma.201801743

    67. [67]

      ZHANG Y H, SUN R J, OU X Y, FU K F, CHEN Q S, DING Y C, XU L J, LIU L M, HAN Y, MALKO A V, LIU X G, YANG H H, BAKR O M, LIU H, MOHAMMED O F. Metal halide perovskite nanosheet for X-ray high-resolution scintillation imaging screens[J]. ACS Nano, 2019, 13(2): 2520-2525  doi: 10.1021/acsnano.8b09484

    68. [68]

      LI Y W, XU Y L, YAO F, LIN Q Q. Heterovalent cation-exchange of CsPbBr3 perovskite nanocrystals with enhanced stability for X-ray imaging[J]. Appl. Phys. Lett., 2023, 123(11): 111103  doi: 10.1063/5.0158665

    69. [69]

      YANG Z, YAO J S, XU L M, FAN W X, SONG J Z. Designer bright and fast CsPbBr3 perovskite nanocrystal scintillators for high-speed X-ray imaging[J]. Nat. Commun., 2024, 15: 8870  doi: 10.1038/s41467-024-53263-9

    70. [70]

      WANG Y, WANG C, MEN L, HU Q S, XIAO J W. Colloidal synthesis of hollow double perovskite nanocrystals and their applications in X-ray imaging[J]. Inorg. Chem., 2024, 63(12): 5734-5742  doi: 10.1021/acs.inorgchem.4c00280

    71. [71]

      XING G Y, CUI E D, YUAN X Y, WANG B, ZHAO Y A, TANG J F, CHEN J C, LIU J. Defects in ligand-exchange-passivated mixed- halide double perovskite nanocrystals for X-ray imaging[J]. Laser Photon. Rev., 2025, 19(5): 2401552  doi: 10.1002/lpor.202401552

    72. [72]

      GUAN L Q, SHI S, NIU X W, GUO S C, ZHAO J, JI T M, DONG H, JIA F Y, XIAO J W, SUN L D, YAN C H. All-inorganic manganese-based CsMnCl3 nanocrystals for X-ray imaging[J]. Adv. Sci., 2022, 9(18): 202201354

    73. [73]

      ZHOU J E, AN K, HE P, YANG J, ZHOU C, LUO Y, KANG W, HU W, FENG P, ZHOU M, TANG X S. Solution-processed lead-free perovskite nanocrystal scintillators for high-resolution X-ray CT imaging[J]. Adv. Opt. Mater., 2021, 9(11): 2022144

    74. [74]

      YAO Q F, ZHU M S Q, YANG Z C, SONG X R, YUAN X, ZHANG Z P, HU W P, XIE J P. Molecule-like synthesis of ligand-protected metal nanoclusters [J]. Nat. Rev. Mater., 2025, 10(2): 89-108

    75. [75]

      WANG J J, FENG L Z, SHI G Y, YANG J N, ZHANG Y D, XU H Y, SONG K H, CHEN T, ZHANG G Z, ZHENG X S, FAN F J, XIAO Z G, YAO H B. High efficiency warm-white light-emitting diodes based on copper-iodide clusters[J]. Nat. Photonics, 2024, 18(2): 200-206  doi: 10.1038/s41566-023-01340-8

    76. [76]

      ZHANG N, LI Y, HAN S Y, WEI Y, HU H, HUO R, DUAN C B, ZHANG J, HAN C M, XIE G H, XU H. Cluster light-emitting diodes containing copper iodine cube with 100% exciton utilization using host-cluster synergy[J]. Angew. Chem. ‒Int. Edit., 2023, 62(27): e202305018  doi: 10.1002/anie.202305018

    77. [77]

      OSAKADA Y, PRATX G, SUN C, SAKAMOTO M, AHMAD M, VOLOTSKOVA O, ONG Q X, TERANISHI T, HARADA Y, XING L, CUI B X. Hard X-ray-induced optical luminescence via biomolecule-directed metal clusters[J]. Chem. Commun., 2014, 50(27): 3549-3551  doi: 10.1039/C3CC48661C

    78. [78]

      LIU Z Y, JUNG K O, TAKAHATA R, SAKAMOTO M, TERANISHI T, FUJITSUKA M, PRATX G, OSAKADA Y. Hard X-ray excited optical luminescence from protein-directed Au∼20 clusters[J]. RSC Adv., 2020, 10(23): 13824-13829  doi: 10.1039/D0RA01935F

    79. [79]

      KIRAKCI K, KUBáT P, FEJFAROVá K, MARTINČíK J, NIKL M, LANG K. X-ray inducible luminescence and singlet oxygen sensitization by an octahedral molybdenum cluster compound: A new class of nanoscintillators [J]. Inorg. Chem., 2015, 55(2): 803-809

    80. [80]

      EVTUSHOK D V, MELNIKOV A R, VOROTNIKOVA N A, VOROTNIKOV Y A, RYADUN A A, KURATIEVA N V, KOZYR K V, OBEDINSKAYA N R, KRETOV E I, NOVOZHILOV I N, MIRONOV Y V, STASS D V, EFREMOVA O A, SHESTOPALOV M A. A comparative study of optical properties and X-ray induced luminescence of octahedral molybdenum and tungsten cluster complexes[J]. Dalton Trans., 2017, 46(35): 11738-11747  doi: 10.1039/C7DT01919J

    81. [81]

      KIRAKCI K, FEJFAROVÁ K, MARTINČÍK J, NIKL M, LANG K. Tetranuclear copper(Ⅰ) iodide complexes: A new class of X-ray phosphors[J]. Inorg. Chem., 2017, 56(8): 4609-4614  doi: 10.1021/acs.inorgchem.7b00240

    82. [82]

      ZHOU Y, HE T Y, YUAN P, YIN J, CHEN S L, GUTIÉRREZ ARZALUZ L, WANG L J, BAKR O M, MOHAMMED O F. Colloidal Cu4I4 clusters for high-resolution X-ray imaging scintillation screens[J]. ACS Mater. Lett., 2023, 5(8): 2002-2008  doi: 10.1021/acsmaterialslett.3c00377

    83. [83]

      LU K D, AUNG T, GUO N N, WEICHSELBAUM R, LIN W B. Nanoscale metal-organic frameworks for therapeutic, imaging, and sensing applications[J]. Adv. Mater., 2018, 30(37): 1707634  doi: 10.1002/adma.201707634

    84. [84]

      WU M X, YANG Y W. Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy[J]. Adv. Mater., 2017, 29(23): 1606134  doi: 10.1002/adma.201606134

    85. [85]

      HE C B, LIU D M, LIN W B. Nanomedicine applications of hybrid nanomaterials built from metal-ligand coordination bonds: Nanoscale metal-organic frameworks and nanoscale coordination polymers[J]. Chem. Rev., 2015, 115(19): 11079-11108  doi: 10.1021/acs.chemrev.5b00125

    86. [86]

      LAN G X, NI K Y, XU R Y, LU K D, LIN Z K, CHAN C, LIN W B. Nanoscale metal-organic layers for deeply penetrating X‑ray‑induced photodynamic therapy[J]. Angew. Chem. ‒Int. Edit., 2017, 56(40): 12102-12106  doi: 10.1002/anie.201704828

    87. [87]

      WANG C, VOLOTSKOVA O, LU K D, AHMAD M, SUN C, XING L, LIN W B. Synergistic assembly of heavy metal clusters and luminescent organic bridging ligands in metal-organic frameworks for highly efficient X-ray scintillation[J]. J. Am. Chem. Soc., 2014, 136(17): 6171-6174  doi: 10.1021/ja500671h

    88. [88]

      PEREGO J, VILLA I, PEDRINI A, PADOVANI E C, CRAPANZANO R, VEDDA A, DUJARDIN C, BEZUIDENHOUT C X, BRACCO S, SOZZANI P E, COMOTTI A, GIRONI L, BERETTA M, SALOMONI M, KRATOCHWIL N, GUNDACKER S, AUFFRAY E, MEINARDI F, MONGUZZI A. Composite fast scintillators based on high-Z fluorescent metal-organic framework nanocrystals[J]. Nat. Photonics, 2021, 15(5): 393-400  doi: 10.1038/s41566-021-00769-z

    89. [89]

      PEREGO J, BEZUIDENHOUT C X, VILLA I, COVA F, CRAPANZANO R, FRANK I, PAGANO F, KRATOCHWILL N, AUFFRAY E, BRACCO S, VEDDA A, DUJARDIN C, SOZZANI P E, MEINARDI F, COMOTTI A, MONGUZZI A. Highly luminescent scintillating hetero-ligand MOF nanocrystals with engineered Stokes shift for photonic applications[J]. Nat. Commun., 2022, 13: 3504  doi: 10.1038/s41467-022-31163-0

    90. [90]

      WANG F, DENG R R, LIU X G. Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes[J]. Nat. Protoc., 2014, 9(7): 1634-1644  doi: 10.1038/nprot.2014.111

    91. [91]

      CHEN G Y, OHULCHANSKYY T Y, LIU S, LAW W C, WU F, SWIHART M T, ÅGREN H, PRASAD P N. Core/shell NaGdF4∶Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications[J]. ACS Nano, 2012, 6(4): 2969-2977  doi: 10.1021/nn2042362

    92. [92]

      ZHU W J, MA W B, SU Y R, CHEN Z, CHEN X Y, MA Y G, BAI L Z, XIAO W G, LIU T Y, ZHU H M, LIU X F, LIU H F, LIU X, YANG Y. Low-dose real-time X-ray imaging with nontoxic double perovskite scintillators[J]. Light‒Sci. Appl., 2020, 9(1): 112

    93. [93]

      ZHOU J, ZHU X J, CHEN M, SUN Y, LI F Y. Water-stable NaLuF4-based upconversion nanophosphors with long-term validity for multimodal lymphatic imaging[J]. Biomaterials, 2012, 33(26): 6201-6210  doi: 10.1016/j.biomaterials.2012.05.036

    94. [94]

      JIANG M Y, XUE Z L, LI Y B, LIU H R, ZENG S J, HAO J H. A soft X-ray activated lanthanide scintillator for controllable NO release and gas-sensitized cancer therapy[J]. Nanoscale Horiz., 2020, 5(2): 268-273  doi: 10.1039/C9NH00564A

    95. [95]

      JIA T, XU J T, DONG S M, HE F, ZHONG C N, YANG G X, BI H T, XU M S, HU Y K, YANG D. Mesoporous cerium oxide-coated upconversion nanoparticles for tumor-responsive chemo-photodynamic therapy and bioimaging[J]. Chem. Sci., 2019, 10(37): 8618-8633  doi: 10.1039/C9SC01615E

    96. [96]

      DAI Y, YANG D P, YU D P, CAO C, WANG Q H, XIE S H, SHEN L, FENG W, LI F Y. Mussel-inspired polydopamine-coated lanthanide nanoparticles for NIR-Ⅱ/CT dual imaging and photothermal therapy[J]. ACS Appl. Mater. Interfaces, 2017, 9(32): 26674-26683  doi: 10.1021/acsami.7b06109

    97. [97]

      HOU B, YI L Y, HU D H, LUO Z C, GAO D Y, LI C, XING B W, WANG J W, LEE C N, ZHANG R, SHENG Z H, ZHOU B, LIU X G. A swallowable X-ray dosimeter for the real-time monitoring of radiotherapy[J]. Nat. Biomed. Eng., 2023, 7(10): 1242-1251  doi: 10.1038/s41551-023-01024-2

    98. [98]

      WIBOWO A, SHEIKH M A K, DIGUNA L J, ANANDA M B, MARSUDI M A, ARRAMEL A, ZENG S W, WONG L J, BIROWOSUTO M D. Development and challenges in perovskite scintillators for high-resolution imaging and timing applications[J]. Commun. Mater., 2023, 4(1): 21  doi: 10.1038/s43246-023-00348-5

    99. [99]

      YI L Y, HOU B, ZHAO H, LIU X G. X-ray-to-visible light-field detection through pixelated colour conversion[J]. Nature, 2023, 618(7964): 281-286  doi: 10.1038/s41586-023-05978-w

    100. [100]

      YANG Z J, ZHANG P, CHEN X F, HONG Z Z, GONG J W, OU X Y, WU Q X, LI W H, WANG X Z, XIE L L, ZHANG Z Z, YU Z Y, QIN X, TANG J, ZHANG H J, CHEN Q S, HAN S Y, YANG H H. High-confidentiality X-ray imaging encryption using prolonged imperceptible radioluminescence memory scintillators[J]. Adv. Mater., 2023, 35(52): 2309413  doi: 10.1002/adma.202309413

    101. [101]

      ZHAO X T, LI Y B, DU L M, DENG Z M, JIANG M Y, ZENG S J. Soft X-ray stimulated lanthanide@MOF nanoprobe for amplifying deep tissue synergistic photodynamic and antitumor immunotherapy[J]. Adv. Healthcare Mater., 2021, 10(21): 2101174  doi: 10.1002/adhm.202101174

    102. [102]

      MA X Q, LIN N, YANG Q, LIU P F, DING H Z, XU M J, REN F F, SHEN Z Y, HU K, MENG S S, CHEN H M. Biodegradable copper-iodide clusters modulate mitochondrial function and suppress tumor growth under ultralow‑dose X‑ray irradiation[J]. Nat. Commun., 2024, 15(1): 8092  doi: 10.1038/s41467-024-52278-6

    103. [103]

      YANG K D, YANG Y T, SUN D Q, LI S H, SONG X R, YANG H H. Designing highly UV-emitting lanthanide nanoscintillators for in vivo X-ray-activated tumor therapy[J]. Sci. China Mater., 2023, 66(10): 4090-4099  doi: 10.1007/s40843-023-2548-8

    104. [104]

      DU Z, WANG X, ZHANG X, GU Z J, FU X Y, GAN S J, FU T, XIE S T, TAN W H. X-ray-triggered carbon monoxide and manganese dioxide generation based on scintillating nanoparticles for cascade cancer radiosensitization[J]. Angew. Chem. ‒Int. Edit., 2023, 62(23): e202302525  doi: 10.1002/anie.202302525

    105. [105]

      LIU S K, LI W T, CHEN H X, ZHOU J L, DONG S M, ZANG P Y, TIAN B S, DING H, GAI S L, YANG P P, ZHAO Y L. On-demand generation of peroxynitrite from an integrated two-dimensional system for enhanced tumor therapy[J]. ACS Nano, 2022, 16(6): 8939-8953  doi: 10.1021/acsnano.1c11422

    106. [106]

      CHEN Z W, TSYTSAREV V, FINFROCK Y Z, ANTIPOVA O A, CAI Z H, ARAKAWA H, LISCHKA F W, HOOKS B M, WILTON R, WANG D Y, LIU Y, GAITAN B, TAO Y, CHEN Y, ERZURUMLU R S, YANG H H, ROZHKOVA E A. Wireless optogenetic modulation of cortical neurons enabled by radioluminescent nanoparticles[J]. ACS Nano, 2021, 15(3): 5201-5208  doi: 10.1021/acsnano.0c10436

  • 加载中
    1. [1]

      Jian LiYu ZhangRongrong YanKaiyuan SunXiaoqing LiuZishang LiangYinan JiaoHui BuXin ChenJinjin ZhaoJianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042

    2. [2]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    3. [3]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    4. [4]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    5. [5]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    6. [6]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    7. [7]

      Qiang HUZhiqi CHENZhong CHENXu WANGWeina WU . Pyridinium-chalcone-based ClO- fluorescent probe: Preparation and biological imaging applications. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1789-1795. doi: 10.11862/CJIC.20250086

    8. [8]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    9. [9]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    10. [10]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    11. [11]

      Shasha SUNWeichun HUANGMengke WANG . Research progress of interface regulation strategies and applications of two‑dimensional MXenes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1465-1482. doi: 10.11862/CJIC.20240430

    12. [12]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    13. [13]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046

    14. [14]

      Yuhang ZhangWeiwei ZhaoHongwei LiuJunpeng Lü . Progress on Self-Powered Photodetectors Based on Low-Dimensional Materials. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-0. doi: 10.3866/PKU.WHXB202310004

    15. [15]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    16. [16]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    17. [17]

      Xiwen Xing Muyi Guo Zhuoran Hu Shunchun Yao Yao Sun . Context-Driven Teaching with Cue-Guided Reasoning: Taking X-Ray Teaching Practice as an Example. University Chemistry, 2025, 40(7): 141-147. doi: 10.12461/PKU.DXHX202409097

    18. [18]

      Yuqiao Zhou Weidi Cao Shunxi Dong Lili Lin Xiaohua Liu . Study on the Teaching Reformation of Practical X-ray Crystallography. University Chemistry, 2024, 39(3): 23-28. doi: 10.3866/PKU.DXHX202303003

    19. [19]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 2309036-0. doi: 10.3866/PKU.WHXB202309036

    20. [20]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

Metrics
  • PDF Downloads(2)
  • Abstract views(64)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return