Citation: Qiaorong RU. Synthesis and characterization of tripyridine functionalized polyionic liquid luminescent materials[J]. Chinese Journal of Inorganic Chemistry, ;2026, 42(1): 111-119. doi: 10.11862/CJIC.20250121 shu

Synthesis and characterization of tripyridine functionalized polyionic liquid luminescent materials

  • Corresponding author: Qiaorong RU, 330628740@qq.com
  • Received Date: 8 April 2025
    Revised Date: 6 December 2025

Figures(12)

  • A vinylimidazole-terpyridine ionic liquid monomer containing bromide ions (TerVi[Br]) was synthesized using low-toxicity ethyl acetate as the solvent. After polymerization, a hydrophobic polymeric ionic liquid (PTerVi[Tf2N]) was subsequently obtained by introducing the bis(trifluoromethanesulfonyl)imide anion (Tf2N-) via ion exchange. The terpyridine group in the structure not only effectively coordinates with the rare-earth Eu3+ ion but also acts as an "antenna" to sensitize its luminescence, enabling the construction of high-performance rare-earth luminescent materials. The influence of the sequence of polymerization and ion exchange on the structure and properties of the materials was systematically investigated. It was found that the product obtained via the "polymerization first, then ion exchange" route (PTerVi[Tf2N]-Eu) exhibited significantly better luminescence performance than that prepared by the "ion exchange first, then polymerization" route (P(TerVi[Tf2N])-Eu). Specifically, PTerVi[Tf2N]-Eu achieved a quantum yield of 20.52%, higher than the 15.70% of P(TerVi[Tf2N])-Eu, along with a longer fluorescence lifetime of the 5D0 energy level of Eu3+.
  • 加载中
    1. [1]

      MA S F, XU H, GAO T Z, HOU S C, CHEN M G, ZENG Q Y, LIU Y, FENG W, GAO K, LI Y, XU Y H. Research progress on application of microwave technology in rare earth field[J]. Hydrometallurgy of China, 2024, 43(5): 489-496

    2. [2]

      WANG Y, LI H R. Synthesis and properties of binary ionic complex Eu(HFA)4TPP doped PMMA films[J]. Chinese Journal of Applied Chemistry, 2024, 41(5): 607-621

    3. [3]

      LI Q R. Fabrication and characterization for novel luminescent aggregates based on lanthanide complexes and ionic liquids[D]. Ji′nan: Shandong University, 2020: 41-44

    4. [4]

      QIAN G D, WANG M Q. Preparation and fluorescence properties of nanocomposites of amorphous silica glasses doped with lanthanide(Ⅲ) benzoates[J]. J. Phys. Chem. Solids, 1997, 58: 375-378  doi: 10.1016/S0022-3697(96)00149-7

    5. [5]

      BIGHAM N P, WILSON J J. Metal coordination complexes as therapeutic agents for ischemia-reperfusion injury[J]. J. Am. Chem. Soc., 2023, 145(17): 9389-9409  doi: 10.1021/jacs.3c01984

    6. [6]

      RU Q R, XUE Z, WANG Y, LIU Y M, LI H R. Luminescent materials of europium(Ⅲ) coordinated by a terpyridine-functionalized poly(ionic liquid)[J]. Eur. J. Inorg. Chem., 2014, 2014(3): 469-474

    7. [7]

      CHEN X, ZHANG P, WANG T, LI H. The first europium(Ⅲ) β-diketonate complex functionalized polyhedral oligomeric silsesquioxane[J]. Chem.‒Eur. J., 2014, 20(9): 2551-2556  doi: 10.1002/chem.201303957

    8. [8]

      DAI S Y, JIANG L, ZHANG C N, HU L H. Study on the energy transfer and fluorescence properties of phenanthroline derivative-europium complexes affected by substituents[J]. Journal of Anhui Normal University (Natural Science), 2018, 41(1): 5-10

    9. [9]

      ZHOU F, WANG T R, LI Z Q, WANG Y G. Transparent and luminescent ionogels composed of Eu3+-coordinated ionic liquids and poly (methyl methacrylate)[J]. Luminescence, 2015, 30: 1303-1307  doi: 10.1002/bio.2897

    10. [10]

      GUO M Q. Preparation, characterization and fluorescence properties of Eu organic three element complex[D]. Nanchang: Nanchang Hangkong University, 2016.

    11. [11]

      LI H R, WANG T R. Research progress on novel rare earth luminescent materials based on rare earth complexes and ionic liquids[J]. Chinese Journal of Luminescence, 2018, 39: 425-439

    12. [12]

      LI P, LI Z Q, LI H R. Emission fingerprint relationships of low-level water in organic solvents based on Ln3+-β-diketonate complexes in laponite[J]. Adv. Opt. Mater., 2016, 4: 156-161  doi: 10.1002/adom.201500502

    13. [13]

      YUAN J Y, MÄRKYAS A. Poly(ionic liquid)s: Polymers expanding classical property profiles[J]. Polymer, 2011, 52: 1469-1482  doi: 10.1016/j.polymer.2011.01.043

    14. [14]

      POTTS K T, USIFERT D A. Polymers and polymer-metal complexes containing pendent 2,2′:6′,2″-terpyridinyl ligands[J]. Macromolecules, 1988, 21(7): 1985-1991  doi: 10.1021/ma00185a016

    15. [15]

      KOTOVA O, DALY R, DOS SANTOS C M G, GUNNLAUGSSON T. Europium-directed self-assembly of a luminescent supramolecular gel from a tripodal terpyridine-based ligand[J]. Angew. Chem.‒Int. Edit., 2012, 51(29): 7208-7212  doi: 10.1002/anie.201201506

    16. [16]

      ZHENG W J. Application of ionic liquids in inorganic synthesis[J]. University Chemistry, 2024, 39(8): 163-168

    17. [17]

      HU Z J, YANG J X, TIAN Y P, ZHOU H P, TAO X T, XU G B, YU W T, YU X Q, HUA M. Synthesis and optical properties of two 2,2′:6′,2″-terpyridyl-based two-photon initiators[J]. J. Mol. Struct., 2007, 839: 50-57  doi: 10.1016/j.molstruc.2006.10.044

    18. [18]

      WANG Z Y, YANG J, DING F Y, WANG H. Design, synthesis and photophysical properties of terpyridine derivatives and their zinc complexes[J]. Guangzhou Chemical Industry, 2024, 52(24): 165-167

    19. [19]

      TANG W, WU J R, JI S Y, LIU Z D, HAO F Y. Synthesis, characterization and optical properties of 4-(4-(5-formyl-2-thienyl)phenyl)-2,2′:6′,2″-terpyridine[J]. Chinese Journal of Synthetic Chemistry, 2024, 32(11): 944-950, 972

    20. [20]

      QIAO H M. Preparation methods and characterization of porous polymer microspheres[J]. Chinese Journal of Pharmaceuticals, 2015, 46(11): 1245-1249

    21. [21]

      CHEN S S, LÜ D L, QIAO R, ZHU J J, SHENG L Q. Synthesis, structures and properties of two supramolecular coordination polymers based on 4-imidazolecarboxylic acid ligand[J]. Chinese J. Inorg. Chem., 2015, 31(2): 420-428

    22. [22]

      LIU X C. Synthesis, characterization and properties of rare earth luminescent complexes coordinated with 4-pyridyl terpyridine derivatives[D]. Hohhot: Inner Mongolia University, 2015: 5-17

    23. [23]

      WANG T T. Synthesis and sensing properties of 2,2′:6′,2″-terpyridine derivatives and their transition/rare earth metal complexes[D]. Xi′an: Northwest University, 2018: 1-9

    24. [24]

      BÜNZLI J C G. Lanthanide luminescence for biomedical analyses and imaging[J]. Chem. Rev., 2010, 110(5): 2729-2755  doi: 10.1021/cr900362e

    25. [25]

      ZHANG P M, WANG Y G, LIU H H, CHEN Y H. Preparation and luminescence of europium(Ⅲ) terpyridine complex-bridged polysilsesquioxanes[J]. J. Mater. Chem., 2011, 21(45): 18462-18470  doi: 10.1039/c1jm12894a

    26. [26]

      LI H. Preparation and properties of rare earth europium fluorescent materials based on terpyridine ligands[D]. Shijiazhuang: Hebei University of Science and Technology, 2021: 3-18

    27. [27]

      SHEN P P, REN N, ZHANG J J, ZHENG X F. Rare earth compounds with 3-methoxybenzoic acid and terpyridine ligands: Structures, thermal and spectroscopic properties[J]. J. Therm. Anal. Calorim., 2019, 135(5): 2687-2695  doi: 10.1007/s10973-018-7265-0

    28. [28]

      ZHENG B Y, YANG L. Preparation of Eu(Ⅲ)-containing hydrogel by UV curing copolymerization and its fluorescent behaviors[J]. Chemical Research and Application, 2014, 26(6): 918-923

    29. [29]

      WANG Y G, LIN N N. Highly transparent and luminescent lanthanide ion‑containing bridged polysilsesquioxanes[J]. Photochem. Photobiol. Sci., 2011, 10(1): 42-47  doi: 10.1039/c0pp00197j

    30. [30]

      RU Q R, CHEN J L, LI H R. Highly transparent and stable luminescent films with stable europium(Ⅲ) complex assisted with anti-reflective coating[J]. Opt. Mater., 2024, 155: 115794  doi: 10.1016/j.optmat.2024.115794

    31. [31]

      LI M, WANG Y, CHEN Y, ZHANG S M. A luminescent ionogel based on an europium(Ⅲ)-coordinated carboxyl-functionalized ionic liquid and gelatin[J]. Photochem. Photobiol. Sci., 2014, 13(7): 1025-1030  doi: 10.1039/c4pp00076e

  • 加载中
    1. [1]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    2. [2]

      Xian BISisi WANGJinyue ZHANGYujia PENGZhen SHENHua LU . Discovery, development, and perspectives of circularly polarized luminescent materials based on β-isoindigo skeletons. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1049-1057. doi: 10.11862/CJIC.20240456

    3. [3]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    4. [4]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    5. [5]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    6. [6]

      Peiyu Zhang Aixin Song Jingcheng Hao Jiwei Cui . 高频超声法制备聚多巴胺薄膜综合实验. University Chemistry, 2025, 40(6): 210-214. doi: 10.12461/PKU.DXHX202407081

    7. [7]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    8. [8]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    9. [9]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    10. [10]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    11. [11]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    12. [12]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    13. [13]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    14. [14]

      Heng Zhang Ying Ma Shiling Yuan . Machine Learning-based Prediction of Antifouling Performance in Polymer Materials: An Integrated Molecular Simulation Experiment. University Chemistry, 2026, 41(1): 346-353. doi: 10.12461/PKU.DXHX202506015

    15. [15]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    16. [16]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    17. [17]

      Xiaoli Sun Xiang Wu Li Gan Wenming Wan . Barbier Polymerization: A New Teaching Case for Step-Growth Polymerization. University Chemistry, 2025, 40(4): 113-118. doi: 10.12461/PKU.DXHX202406102

    18. [18]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    19. [19]

      Huifang XIAOXiaoqian HUXiaofan YELihui LIUFen NIEYanrong DINGYing MAYanzhu LIUYongxiu LI . Coordination-enhanced leaching of bastnaesite from mixed rare earth concentrates and comprehensive recycling of valuable elements. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 141-151. doi: 10.11862/CJIC.20250049

    20. [20]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

Metrics
  • PDF Downloads(0)
  • Abstract views(56)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return