Citation: Ruifeng CHEN, Chao XU, Jianting JIANG, Tianshe YANG. Gold nanorod/zinc oxide/mesoporous silica nanoplatform: A triple-modal platform for synergistic anticancer therapy[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(11): 2272-2282. doi: 10.11862/CJIC.20250117 shu

Gold nanorod/zinc oxide/mesoporous silica nanoplatform: A triple-modal platform for synergistic anticancer therapy

  • Corresponding author: Tianshe YANG, iamtsyang@njupt.edu.cn
  • Received Date: 3 April 2025
    Revised Date: 1 July 2025

Figures(6)

  • Herein, we engineered a multifunctional nanoplatform DOX-AuNR@ZnO@SiO2 (DOX=doxorubicin, AuNR=gold nanorod) by integrating photothermal therapy, reactive oxygen species (ROS)-mediated oxidative damage, and chemotherapy. The system was constructed by sequentially decorating AuNR with a ZnO layer for ROS generation and a mesoporous silica (mSiO2) shell for biocompatibility enhancement and DOX loading. The nanocomposite exhibited a well-defined core-shell structure with uniform size, excellent colloidal stability, and favorable bio-compatibility. Under near-infrared (NIR) irradiation, the AuNR core demonstrated remarkable photothermal conversion efficiency (20.85%) and photostability over multiple cycles. NIR-triggered thermal expansion can enhance the release of DOX from mesoporous SiO2. Simultaneously, ZnO-mediated cytotoxic ROS were generated to synergize with photothermal ablation and chemotherapy. In vitro evaluations using HeLa cells revealed triple-modal therapeutic efficacy with superior tumor suppression. The rationally designed nanoplatform successfully integrates chemotherapy, photothermal therapy, and ROS-mediated therapy.
  • 加载中
    1. [1]

      WANG H Y, JIANG L M, WU H H, ZHENG W Y, KAN D, CHENG R, YAN J J, YU C S, SUN S K. Biocompatible iodine-starch-alginate hydrogel for tumor photothermal therapy[J]. ACS Biomater. Sci. Eng., 2019,5:3654-3662. doi: 10.1021/acsbiomaterials.9b00280

    2. [2]

      XU J S, LIAO K L, JIANG H X, ZHOU W M. Research progress of novel inorganic nanometre materials carriers in nanomedicine for cancer diagnosis and treatment[J]. Artif. Cell. Nanomed. Biotechnol., 2018,46(3):492-502.

    3. [3]

      CHENG Y, JI Y H. RGD -modified polymer and liposome nanovehicles: Recent research progress for drug delivery in cancer therapeutics[J]. Eur. J. Pharm. Sci., 2019,128:8-17. doi: 10.1016/j.ejps.2018.11.023

    4. [4]

      SHEN S, FENG L, QI S Y, CAO J, GE Y R, WU L, WANG S. Reversible thermochromic nanoparticles composed of a eutectic mixture for temperature-controlled photothermal therapy[J]. Nano Lett., 2020,20:2137-2143. doi: 10.1021/acs.nanolett.0c00147

    5. [5]

      WANG J, LIANG D W, JIN Q Q, FENG J, TANG X J. Bioorthogonal SERS nanotags as a precision theranostic platform for in vivo SERS imaging and cancer photothermal therapy[J]. Bioconjugate Chem., 2020,31:182-193. doi: 10.1021/acs.bioconjchem.0c00022

    6. [6]

      HUANG B, HU J, LI H, LUO M Y, CHEN S, ZHANG M X, SUN Z J, CUI R. Near-infrared IIb emitting nanoprobe for high-resolution realtime imaging-guided photothermal therapy triggering enhanced anti-tumor immunity[J]. ACS Appl. Bio Mater., 2020,3:1636-1645. doi: 10.1021/acsabm.9b01202

    7. [7]

      CAO Y B, SONG W, JIANG Q, XU Y, CAI S J, WANG S, YANG W L. Nanoparticles from ancient ink endowing a green and effective strategy for cancer photothermal therapy in the second near -infrared window[J]. ACS Omega, 2020,5:6177-6186. doi: 10.1021/acsomega.0c00252

    8. [8]

      SHANMUGAM V, SELVAKUMAR S, YEH C. Near-infrared light-responsive nanomaterials in cancer therapeutics[J]. Chem. Soc. Rev., 2014,43:6254-6287. doi: 10.1039/C4CS00011K

    9. [9]

      CHEN J H, ZHENG T T, ZHANG X Y, LÜ W. Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors[J]. Chinese J. Inorg. Chem., 2024,40(12):2396-2414. doi: 10.11862/CJIC.20240106

    10. [10]

      LIU T, TIAN Y T, GAO K, HAN X W, MIN R N, ZHAO W J, SUN X Y, YIN C X. A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy[J]. Chinese J. Inorg. Chem., 2024,40(8):1622-1632. doi: 10.11862/CJIC.20240107

    11. [11]

      GUO Z Q, ZOU Y L, HE H, RAO J M, JI S S, CUI X N, KE H T, DEMG Y B, YANG H, CHEN C Y, ZHAO Y L, CHEN H B. Bifunctional platinated nanoparticles for photoinduced tumor ablation[J]. Adv. Mater., 2016,28:10155-10164. doi: 10.1002/adma.201602738

    12. [12]

      CHEN M, TANG S H, GUO Z D, WANG X Y, MO S G, HUANG X Q, LIU G, ZHENG N F. Core-shell Pd@Au nanoplates as theranostic agents for in-vivo photoacoustic imaging, CT imaging, and photothermal therapy[J]. Adv. Mater., 2014,26:8210-8216. doi: 10.1002/adma.201404013

    13. [13]

      XU H, ZHAO L, BAI Y F, FENG F. Research progress in cancer treatment of aptamer functionalized gold nanorods[J]. Chinese J. Inorg. Chem., 2022,38(7):1226-1240. doi: 10.11862/CJIC.2022.129

    14. [14]

      ZHAO X, YANG C X, CHEN L G, YAN X P. ?[1] WANG H Y, JIANG L M, WU H H, ZHENG W Y, KAN D, CHENG R, YAN J J, YU C S, SUN S K. Biocompatible iodine-starch-alginate hydrogel for tumor photothermal therapy[J]. ACS Biomater. Sci. Eng., 2019, 5: 3654-3662[J]. Nat. Commun., 2017,8:14998-15002. doi: 10.1038/ncomms14998

    15. [15]

      LI Y C, ZHANG X, ZHANG Z J, WU H Y, XU X H, GU Z W. Tumoradapting and tumor-remodeling AuNR@dendrimer-assembly nanohybrids overcome impermeable multidrug-resistant cancer[J]. Mater. Horiz., 2018,5:1047-1057. doi: 10.1039/C8MH00694F

    16. [16]

      XIE L L, ZHI X M, XIAO N, FANG C J, YAN C H. Constraining the conformation of peptides with Au nanorods to construct multifunctional therapeutic agents with targeting, imaging, and photothermal abilities[J]. RSC Adv., 2018,8:26517-26522. doi: 10.1039/C8RA04379E

    17. [17]

      LI J Y, LIU J, CHEN C Y. Remote control and modulation of cellular events by plasmonic gold nanoparticles: Implications and opportunities for biomedical applications[J]. ACS Nano, 2017,11:2403-2409. doi: 10.1021/acsnano.7b01200

    18. [18]

      XU C, YANG D R, MEI L, LI Q H, ZHU H Z, WANG T H. Targeting chemophotothermal therapy of hepatoma by gold nanorods/ graphene oxide core/shell nanocomposites[J]. ACS Appl. Mater. Interfaces, 2013,5:12911-12920. doi: 10.1021/am404714w

    19. [19]

      HE W W, KIM H, WAMER W, MELKA D, CALLAHAN J, YIN J J. Photogenerated charge carriers and reactive oxygen species in ZnO/ Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity[J]. J. Am. Chem. Soc., 2014,136:750-757. doi: 10.1021/ja410800y

    20. [20]

      KANG Z, YAN X Q, ZHAO L Q, LIAO Q L, ZHAO K, DU H W, ZHANG X H, ZHANG X J, ZHANG Y. Gold nanoparticle/ZnO nanorod hybrids for enhanced reactive oxygen species generation and photodynamic therapy[J]. Nano Res., 2015,8:2004-2014. doi: 10.1007/s12274-015-0712-3

    21. [21]

      CHIANG H M, XIA Q S, ZOU X J, WANG C, WANG S G, MILLER B, HOWARD P, YIN J J, BELAND F, YUU H T, FU P. Nanoscale ZnO induces cytotoxicity and DNA damage in human cell lines and rat primary neuronal cells[J]. J. Nanosci. Nanotechnol., 2012,12:2126-2135. doi: 10.1166/jnn.2012.5758

    22. [22]

      YANG C Y, GUO W, CUI L R, AN N, ZHANG T, LIN H M, QU F Y. pH-responsive magnetic core-shell nanocomposites for drug delivery[J]. Langmuir, 2014,30:9819-9827. doi: 10.1021/la501833u

    23. [23]

      CHEN M M, GENG H R, HU J X, ZHANG Q, AGYEKUM G A, ZHANG Z Q, CAO X C. Synthesis of fluorescent mesoporous silica nanoparticles and application for intracellular drug delivery[J]. Chinese J. Inorg. Chem., 2019,35(11):2125-2135. doi: 10.11862/CJIC.2019.244

    24. [24]

      SU Y Y, TENG Z G, YAO H, WANG S J, TIAN Y, ZHANG Y L, LIU W F, TIAN W, ZHENG L J, LU N, NI Q Q, SU X D, TANG Y X, SUN J, LIU Y, WU J, YANG G F, LU G M, ZHANG L J. A multifunctional PB@mSiO 2-PEG/DOX nanoplatform for combined photothermal-chemotherapy of tumor[J]. ACS Appl. Mater. Interfaces, 2016,8:17038-17046. doi: 10.1021/acsami.6b01147

    25. [25]

      HU T T, SHEN C, WANG X Y, WU F B, HE Z Y. Tumor microenvironment-sensitive polymeric nanoparticles for synergetic chemo-photo therapy[J]. Chin. Chem. Lett., 2024,35:71-83.

    26. [26]

      CHEN S Y, CHEN J, LIN Y, SHI C H. Performance validation of BD FACSCanto Ⅱ flow cytometer method[J]. Laboratory Medicine, 2016,31(5):405-411.

    27. [27]

      KEITH ROPER D, AHN W, HOEPFNER M. Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles[J]. J. Phys. Chem. C, 2007,111:3636-3641. doi: 10.1021/jp064341w

    28. [28]

      YANG X H, FENG C C, WANG P F, XIE S S, WANG Y Y, ZHANG H T, HE Z G, ZHANG S W, LUO C. Precisely self-cooperative nanoassembly enables photothermal/ferroptosis synergistic tumor eradication[J]. Adv. Healthc. Mater., 2024,13e2304485. doi: 10.1002/adhm.202304485

  • 加载中
    1. [1]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    2. [2]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    3. [3]

      Hongpeng HeMengmeng ZhangMengjiao HaoWei DuHaibing Xia . Synthesis of Different Aspect-Ratios of Fixed Width Gold Nanorods. Acta Physico-Chimica Sinica, 2024, 40(5): 2304043-0. doi: 10.3866/PKU.WHXB202304043

    4. [4]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    5. [5]

      Bowen LiuJianjun ZhangHan LiBei ChengChuanbiao Bie . MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation. Acta Physico-Chimica Sinica, 2025, 41(10): 100121-0. doi: 10.1016/j.actphy.2025.100121

    6. [6]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    7. [7]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    8. [8]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    9. [9]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    10. [10]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    11. [11]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    12. [12]

      Dingwen CHENSiheng YANGHaiyan FUHua CHENXueli ZHENGWeichao XUEJiaqi XURuixiang LI . NiOOH-mediated synthesis of gold nanoaggregates for electrocatalytic performance for selective oxidation of glycerol to glycolate. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2317-2326. doi: 10.11862/CJIC.20250053

    13. [13]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    14. [14]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    15. [15]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    16. [16]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    17. [17]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    18. [18]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    19. [19]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    20. [20]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

Metrics
  • PDF Downloads(0)
  • Abstract views(318)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return