Citation: Yang LIU, Jin TONG, Shuyan YU. Co(Ⅱ) coordination polymers: Structural characterization and fluorescence sensing of Al3+ in aqueous[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(11): 2399-2408. doi: 10.11862/CJIC.20250114 shu

Co(Ⅱ) coordination polymers: Structural characterization and fluorescence sensing of Al3+ in aqueous

Figures(9)

  • Complexes [Co(hfacac)2(L1)]n (1) and [Co(hfacac)(L2)]n (2) (Hhfacac=hexafluoroacetylacetonate) were synthesized by coordinating Co(hfacac)2 with ligands 3, 6-di(pyridin-4-yl)-9H-carbazole (L1) and 9-methyl-3, 6-di(pyridin-4-yl)-9H-carbazole (L2), respectively. The complexes were characterized by infrared spectrometry, UV-Vis spectrometry, electrospray ionization mass spectrometry, and single-crystal X-ray diffraction. Single-crystal X-ray diffraction analysis revealed that complex 2 crystallizes in a triclinic crystal system with the space group P1, and the unit cell volume is 1.928 7(2) nm3. The Co(Ⅱ) centers exhibit distorted octahedral coordination. One-dimensional chain structures of 2 are stabilized by hydrogen bonding and π-π stacking interactions. Fluorescence studies showed that complex 1 could be highly selective in Al3+ detection with a limit of detection of 51.3 nmol·L-1 and had a significant turn-on response to Al3+, which is attributed to the chelation-enhanced fluorescence (CHEF) mechanism. Furthermore, fluorescent test strips were developed for rapid in situ detection of Al3+.
  • 加载中
    1. [1]

      HUANG L M, WANG H T, CHEN J X, WANG Z B, SUN J Y, ZHAO D Y, YAN Y S. Synthesis, morphology control, and properties of porous metal-organic coordination polymers[J]. Microporous Mesoporous Mat., 2003, 58: 105-114  doi: 10.1016/S1387-1811(02)00609-1

    2. [2]

      FURUKAWA H, CORDOVA K E, O'KEEFFE M, YAGHI O M. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341: 1230444  doi: 10.1126/science.1230444

    3. [3]

      HEINE J, MÜLLER-BUSCHBAUM K. Engineering metal-based luminescence in coordination polymers and metal-organic frameworks[J]. Chem. Soc. Rev., 2013, 42: 9232-9242  doi: 10.1039/c3cs60232j

    4. [4]

      HORCAJADA P, GREF R, BAATI T, ALLAN P K, MAURIN G, COUVREUR P, FÉREY G, MORRIS R E, SERRE C. Metal-organic frameworks in biomedicine[J]. Chem. Rev., 2012, 112: 1232-1268  doi: 10.1021/cr200256v

    5. [5]

      MASOOMI M Y, MORSALI A. Applications of metal-organic coordination polymers as precursors for preparation of nano-materials[J]. Coord. Chem. Rev., 2012, 256: 2921-2943  doi: 10.1016/j.ccr.2012.05.032

    6. [6]

      MASOOMI M Y, MORSALI A. Morphological study and potential applications of nano metal-organic coordination polymers[J]. RSC Adv., 2013, 3: 19191-19218  doi: 10.1039/c3ra43346c

    7. [7]

      SAFARIFARD V, MORSALI A. Applications of ultrasound to the synthesis of nanoscale metal-organic coordination polymers[J]. Coord. Chem. Rev., 2015, 292: 1-14  doi: 10.1016/j.ccr.2015.02.014

    8. [8]

      WRIGHT A M, KAPELEWSKI M T, MARX S, FARHA O K, MORRIS W. Transitioning metal-organic frameworks from the laboratory to market through applied research[J]. Nat. Mater., 2025, 24: 178-187  doi: 10.1038/s41563-024-01947-4

    9. [9]

      ZHAO J, WANG X L, SHI X, YANG Q H, LI C. Synthesis, structure, and photo luminescent properties of metal-organic coordination polymers assembled with bithiophenedicarboxylic acid[J]. Inorg. Chem., 2011, 50: 3198-3205  doi: 10.1021/ic101112b

    10. [10]

      LESZCZYŃSKI M K, JUSTYNIAK I, LEWIŃSKI J. Functional porous carbons derived from novel alkali metal-based coordination polymers for energy storage[J]. ChemRxiv. 2025, DOI:10.26434/chemrxiv-2025-ttn8k  doi: 10.26434/chemrxiv-2025-ttn8k

    11. [11]

      LI Z, ZHANG X L, OU C J, ZHANG Y Z, WANG W J, DONG S Y, DONG X C. Transition metal-based self-supported anode for electrocatalytic water splitting at a large current density[J]. Coord. Chem. Rev., 2023, 495: 215381  doi: 10.1016/j.ccr.2023.215381

    12. [12]

      SANATI S, MORSALI A, GARCÍA H. First-row transition metal-based materials derived from bimetallic metal-organic frameworks as highly efficient electrocatalysts for electrochemical water splitting[J]. Energy Environ. Sci., 2022, 15: 3119-3151  doi: 10.1039/D1EE03614A

    13. [13]

      YANG T, ZHANG H, PANG B, WONG J W C. Recent advances in transition metal-based metal-organic frameworks for hydrogen production[J]. Small Sci., 2025: 2400446

    14. [14]

      XIONG C Y, SU Y D. Recent progress of transition metal-based oxide composite electrode materials in supercapacitor[J]. Adv. Sustain. Syst., 2025, 9: 2400578  doi: 10.1002/adsu.202400578

    15. [15]

      RAN F T, HU M J, DENG S L, WANG K, SUN W J, PENG H, LIU J F. Designing transition metal-based porous architectures for supercapacitor electrodes: A review[J]. RSC Adv., 2024, 14: 11482-11512  doi: 10.1039/D4RA01320D

    16. [16]

      CHE H C, TIAN X K, WANG J H, DAI C, NIE Y L, LI Y, LU L Q. A portable and intelligent logic detector for simultaneous and in-situ detection of Al3+ and fluoride in groundwater[J]. J. Hazard. Mater., 2023, 458: 131956  doi: 10.1016/j.jhazmat.2023.131956

    17. [17]

      LI H J, WANG Y A, JIANG F J, LI M M, XU Z Q. A dual-function [Ru(bpy)3]2+ encapsulated metal-organic framework for ratiometric Al3+ detection and anticounterfeiting application[J]. Dalton Trans., 2023, 52: 3846-3854  doi: 10.1039/D2DT03388G

    18. [18]

      LI M, LI N, SHAO F, WANG R, CHEN M, LIU Y J, ZHAO Y, LI R. Synthesis of a super-low detection limit fluorescent probe for Al3+ and its application in fluorescence imaging of zebrafish and cells[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2024, 308: 123676  doi: 10.1016/j.saa.2023.123676

    19. [19]

      PANG Y L, MENG D S, LIU J, DUAN S X, FAN J R, GAO L Y, LONG X S. Schiff base compounds as fluorescent probes for the highly sensitive and selective detection of Al3+ ions[J]. Molecules, 2023, 28: 3090  doi: 10.3390/molecules28073090

    20. [20]

      CHISEOP L, HANSOL S, CHOI J H, KIM K S, HELAL A, SEO H K. Highly selective fluorescent probe for switch-on Al3+ detection and switch-off F- detection[J]. J. Photochem. Photobiol. A-Chem., 2018, 356: 312-320  doi: 10.1016/j.jphotochem.2018.01.012

    21. [21]

      YAO B Y, ZHANG J H, HAN M, LIANG L, LI X H, CAI X H, LENG Y L. Two novel "turn-on" fluorescent probes for the determination of Al3+ and its applications[J]. Inorg. Chem. Commun., 2023, 153: 110798  doi: 10.1016/j.inoche.2023.110798

    22. [22]

      PAVLOV D I, RYADUN A A, POTAPOV A S. A Zn(Ⅱ)-based sql type 2D coordination polymer as a highly sensitive and selective turn-on fluorescent probe for Al3+[J]. Molecules, 2021, 26: 7392  doi: 10.3390/molecules26237392

    23. [23]

      LI P, DONG L Q, JIN H, YANG J R, TU Y H, WANG C, HE Y L. Fluorescence detection of phosphate in an aqueous environment by an aluminum-based metal-organic framework with amido functionalized ligands[J]. Front. Environ. Sci. Eng., 2022, 16: 159  doi: 10.1007/s11783-022-1594-8

    24. [24]

      MONDAL S, SAHOO R, DAS M C. pH-stable Zn(Ⅱ) coordination polymer as a multiresponsive turn-on and turn-off fluorescent sensor for aqueous medium detection of Al􀃮 and Cr􀃱 oxo-anions[J]. Inorg. Chem., 2023, 62: 14124-14133  doi: 10.1021/acs.inorgchem.3c02435

    25. [25]

      KUMAR P, DEEP A, KIM K H, BROWN R J C. Coordination polymers: Opportunities and challenges for monitoring volatile organic compounds[J]. Prog. Polym. Sci., 2015, 45: 102-118  doi: 10.1016/j.progpolymsci.2015.01.002

    26. [26]

      DUTTA B, DEBSHARMA K, DEY S, SINHA C. Advancement and future challenges of metal-organic coordination polymers: A case study of optical sensor for the detection of the environmental contaminants[J]. Appl. Organomet. Chem., 2023, 37: 6919  doi: 10.1002/aoc.6919

    27. [27]

      PARMAR B, BISHT K K, RACHURI Y, SURESH E. Zn(Ⅱ)/Cd(Ⅱ) based mixed ligand coordination polymers as fluorosensors for aqueous phase detection of hazardous pollutants[J]. Inorg. Chem. Front., 2020, 7: 1082-1107

    28. [28]

      WANG Y, MA J X, ZHANG Y, XU N, WANG X L. A series of cobalt-based coordination polymer crystalline materials as highly sensitive electrochemical sensors for detecting trace Cr􀃱, Fe􀃮 ions, and ascorbic acid[J]. Cryst. Growth Des., 2021, 21: 4390-4397  doi: 10.1021/acs.cgd.1c00311

    29. [29]

      YANAI N, KITAYAMA K, HIJIKATA Y, SATO H, MATSUDA R, KUBOTA Y, TAKATA M, MIZUNO M, UEMURA T, KITAGAWA S. Gas detection by structural variations of fluorescent guest molecules in a flexible porous coordination polymer[J]. Nat. Mater., 2011, 10: 787-793  doi: 10.1038/nmat3104

    30. [30]

      MA L F, WANG L Y, WANG Y Y, BATTEN S R, WANG J. Self- assembly of a series of cobalt(Ⅱ) coordination polymers constructed from H2tbip and dipyridyl-based ligands[J]. Inorg. Chem., 2009, 48: 915-924  doi: 10.1021/ic801278j

    31. [31]

      AHMAD M, DAS R, LAMA P, PODDAR P, BHARADWAJ P K. Synthesis, characterization, and magnetic studies of coordination polymers with Co(Ⅱ) and Mn(Ⅱ) ions[J]. Cryst. Growth Des., 2012, 12: 4624-4632  doi: 10.1021/cg300829c

    32. [32]

      FARHA O K, SPOKOYNY A M, MULFORT K L, GALLI S, HUPP J T, MIRKIN C A. Gas-sorption properties of cobalt(Ⅱ)-carborane-based coordination polymers as a function of morphology[J]. Small, 2009, 5: 1727-1731  doi: 10.1002/smll.200900085

    33. [33]

      ZHAO J Y, YUAN J X, FANG Z Y, HUANG S H, CHEN Z Y, QIU F, LU C B, ZHU J H, ZHUANG X D. One-dimensional coordination polymers based on metal-nitrogen linkages[J]. Coord. Chem. Rev., 2022, 471: 214735  doi: 10.1016/j.ccr.2022.214735

    34. [34]

      UVAROVA M A, LUTSENKO I A, BABESHKIN K A, SOKOLOV A V, ALEXANDROV E V, EFIMOV N N, SHMELEV M A, KHOROSHILOV A V, EREMENKO I L, KISKIN M A. Solvent effect in the chemical design of coordination polymers of various topologies with Co2+ and Ni2+ ions and 2-furoate anions[J]. CrystEngComm, 2023, 25: 6786-6795  doi: 10.1039/D3CE00813D

    35. [35]

      BYTAR E, PRICI M. Two Co(Ⅱ)-coordination polymers based on dicarboxylic acid and flexible bis(imidazole) linker for chemical fixation of CO2[J]. J. Mol. Struct., 2025: 141763

    36. [36]

      PISAČIĆ M, KODRIN I, TRNINIĆ A, ĐAKOVIĆ M. Two-dimensional anisotropic flexibility of mechanically responsive crystalline cadmium(Ⅱ) coordination polymers[J]. Chem. Mater., 2022, 34: 2439-2448  doi: 10.1021/acs.chemmater.2c00062

    37. [37]

      TATEISHI T, YOSHIMURA M, TOKUDA S, MATSUDA F, FUJITA D, FURUKAWA S. Coordination/metal-organic cages inside out[J]. Coord. Chem. Rev., 2022, 467: 214612  doi: 10.1016/j.ccr.2022.214612

    38. [38]

      LI T, GAN L L, ZHANG H W, SUN Y X, NIU H Y, DONG W K. Synthesis, structure, theoretical studies, and properties of dinuclear Cu(Ⅱ) and novel trinuclear Co(Ⅱ) complexes with a more flexible 3-MeOsalamo-like ligand[J]. J. Mol. Struct., 2023, 1294: 136465  doi: 10.1016/j.molstruc.2023.136465

    39. [39]

      HOSSEINZADEH B, AHMADI M. Coordination geometry in metallo-supramolecular polymer networks[J]. Coord. Chem. Rev., 2022, 471: 214733  doi: 10.1016/j.ccr.2022.214733

    40. [40]

      LI T, MAN L L, LI X, DONG W K. Two novel quinoline-decorated half-salamo-type Co(Ⅱ) complexes: Synthesis, crystal structure, Hirshfeld surface analysis, DFT calculation and fluorescence properties[J]. J. Mol. Struct., 2023, 1294: 136372  doi: 10.1016/j.molstruc.2023.136372

    41. [41]

      ALMEIDA PAZ F A, KLINOWSKI J, VILELA S M F, TOMÉ J P C, CAVALEIRO J A S, ROCHA J. Ligand design for functional metal-organic frameworks[J]. Chem. Soc. Rev., 2012, 41: 1088-1110  doi: 10.1039/C1CS15055C

    42. [42]

      CLOUGH T J, JIANG L, WONG K L, LONG N. Ligand design strategies to increase stability of gadolinium-based magnetic resonance imaging contrast agents[J]. Nat. Commun., 2019, 10: 1420  doi: 10.1038/s41467-019-09342-3

    43. [43]

      MORPHY R, RANKOVIC Z. Designing multiple ligands—Medicinal chemistry strategies and challenges[J]. Curr. Pharm. Des., 2009, 15: 587-600  doi: 10.2174/138161209787315594

    44. [44]

      LIN Z X, RICHARDSON J J, ZHOU J J, CARUSO F. Direct synthesis of amorphous coordination polymers and metal-organic frameworks[J]. Nat. Rev. Chem., 2023, 7: 273-286  doi: 10.1038/s41570-023-00474-1

    45. [45]

      SANCHIS GUAL R, CORONADO-PUCHAU M, MALLAH T, CORONADO E. Hybrid nanostructures based on gold nanoparticles and functional coordination polymers: Chemistry, physics and applications in biomedicine, catalysis and magnetism[J]. Coord. Chem. Rev., 2023, 480: 215025  doi: 10.1016/j.ccr.2023.215025

    46. [46]

      ZHANG W F, YE G M, LIAO D H, CHEN X L, LU C Y, NEZAMZADEH-EJHIEH A, KHAN M S, LIU J Q, PAN Y, DAI Z. Recent advances of silver-based coordination polymers on antibacterial applications[J]. Molecules, 2022, 27: 7166  doi: 10.3390/molecules27217166

    47. [47]

      ZHAO J J, DANG Z Y, MUDDASSIR M, RAZA S, ZHONG A G, WANG X X, JIN J C. A new Cd(Ⅱ)-based coordination polymer for efficient photocatalytic removal of organic dyes[J]. Molecules, 2023, 28: 6848  doi: 10.3390/molecules28196848

    48. [48]

      YAN D, WANG Z F, ZHANG Z J. Stimuli-responsive crystalline smart materials: From rational design and fabrication to applications[J]. Accounts Chem. Res., 2022, 55: 1047-1058  doi: 10.1021/acs.accounts.2c00027

    49. [49]

      DUAN S, WU R N, XIONG Y H, REN H M, LEI C Y, ZHAO Y Q, ZHANG X Y, XU F J. Multifunctional antimicrobial materials: From rational design to biomedical applications[J]. Prog. Mater. Sci., 2022, 125: 100887  doi: 10.1016/j.pmatsci.2021.100887

    50. [50]

      YE F, WU N, LI P, LIU Y L, LI S J, FU Y. A lysosome-targetable fluorescent probe for imaging trivalent cations Fe3+, Al3+ and Cr3+ in living cells[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2019, 222: 117242  doi: 10.1016/j.saa.2019.117242

    51. [51]

      HUSTON M E, AKKAYA E U, CZARNIK A W. Chelation enhanced fluorescence detection of non-metal ions[J]. J. Am. Chem. Soc., 1989, 111: 8735-8737  doi: 10.1021/ja00205a034

    52. [52]

      NUGENT J W, LEE H, LEE H, REIBENSPIES J H, HANCOCK R D. Mechanism of chelation enhanced fluorescence in complexes of cadmium(Ⅱ), and a possible new type of anion sensor[J]. Chem. Commun., 2013, 49: 9749-9751  doi: 10.1039/c3cc45829f

    53. [53]

      CHEN H J, LI X W, GAO P, PAN Y, LIU J. A BODIPY-based turn-off fluorescent probe for mercury ion detection in solution and on test strips[J]. J. Mol. Struct., 2022, 1262: 133015  doi: 10.1016/j.molstruc.2022.133015

    54. [54]

      WEI P, XIAO L, GOU Y T, HE F, ZHOU D G, LIU Y, XU B, WANG P, ZHOU Y F. Fluorescent "on-off-on" probe based on copper peptide backbone for specific detection of Cu(Ⅱ) and hydrogen sulfide and its applications in cell imaging, real water samples and test strips[J]. Microchem. J., 2022, 182: 107848  doi: 10.1016/j.microc.2022.107848

  • 加载中
    1. [1]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    2. [2]

      Xuehua SUNMin MAJianting LIURui TIANHongmei CHAIHuali CUILoujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294

    3. [3]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    4. [4]

      Rui TIANDuo LIYuan RENJiamin CHAIXuehua SUNHaoyu LIYuecheng ZHANG . Dual-ligand-modified copper nanoclusters: Synthesis and application in ornidazole detection. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1245-1255. doi: 10.11862/CJIC.20240389

    5. [5]

      Rui TIANJiamin CHAIJunyu CHENYuan RENXuehua SUNHaoyu LIYuecheng ZHANG . Chitosan/silica-coated copper nanoclusters: Synthesis and application in cefixime detection. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1903-1915. doi: 10.11862/CJIC.20250026

    6. [6]

      Huaihao CHENLingwen ZHANGYukun CHENJianjun ZHANG . A water-stable metal-organic framework probe for Al3+/Ga3+/In3+ detection. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2601-2608. doi: 10.11862/CJIC.20250184

    7. [7]

      Yuanyu YANGJianhua XUEYujia BAILulu CUIDongdong YANGQi MA . Design, synthesis, and detection of Al3+ of two zinc complexes based on Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1207-1216. doi: 10.11862/CJIC.20250005

    8. [8]

      Junmei FANWei LIURuitao ZHUChenxi QINXiaoling LEIHaotian WANGJiao WANGHongfei HAN . High sensitivity detection of baicalein by N, S co-doped carbon dots and their application in biofluids. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2009-2020. doi: 10.11862/CJIC.20240120

    9. [9]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    10. [10]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    11. [11]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    12. [12]

      Xin Chen Meng Zhao Yan-Yuan Jia . Stable Eu(III)-based metal-organic framework for fluorescence sensing of benzaldehyde and its analogues. Chinese Journal of Structural Chemistry, 2025, 44(3): 100445-100445. doi: 10.1016/j.cjsc.2024.100445

    13. [13]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    14. [14]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    15. [15]

      Shan-Qing YangLu-Lu WangRajamani KrishnaBo XingLei ZhouFei-Yang ZhangQiang ZhangYi-Long LiChao-Sheng BaoTong-Liang Hu . Efficient C3H6/C3H8 separation within a bifunctional ultramicroporous metal-organic framework with high purity and record packing density. Chinese Chemical Letters, 2025, 36(12): 110556-. doi: 10.1016/j.cclet.2024.110556

    16. [16]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    17. [17]

      Xinhui FangXinrui WangBin Ding . Applications of luminescent metal-organic frameworks as pioneering biosensors for biological and chemical detection. Chinese Chemical Letters, 2025, 36(8): 110453-. doi: 10.1016/j.cclet.2024.110453

    18. [18]

      Wei GUOZhuoyi GUOXiaoxin LIWei ZHANGJuanzhi YANTingting GUO . Electrochemical sensor based on a Co(Ⅱ)-based metal-organic framework for the detection of Cd2+ and Pb2+. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1889-1902. doi: 10.11862/CJIC.20250097

    19. [19]

      Jiayi LuYizhang LiHao JiangZhiwen ZhuFengru ZhengQiang Sun . Preparing sub-monolayer metals with continuous coverage spread for high-throughput growth of metal-organic frameworks. Chinese Chemical Letters, 2025, 36(3): 110394-. doi: 10.1016/j.cclet.2024.110394

    20. [20]

      Jing RENRuikui YANXiaoli CHENHuali CUIHua YANGJijiang WANG . Synthesis and fluorescence sensing of a highly sensitive and multi-response cadmium coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 574-586. doi: 10.11862/CJIC.20240287

Metrics
  • PDF Downloads(0)
  • Abstract views(321)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return