Citation: Min WANG, Dehua XIN, Wei ZHANG, Haiying YANG, Yuchun WANG, Zhaorong LIU, Meng SHI, Le SHI. Preparation and full-spectrum catalytic degradation performance of nitrogen vacancy g-C3N4/Bi/BiOBr/BiOI heterojunction material[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(11): 2283-2298. doi: 10.11862/CJIC.20250109 shu

Preparation and full-spectrum catalytic degradation performance of nitrogen vacancy g-C3N4/Bi/BiOBr/BiOI heterojunction material

Figures(11)

  • The multi-component nitrogen vacancy g-C3N4 (NVCN)/Bi/BiOBr/BiOI heterojunction photocatalytic material was prepared by an in-situ solvothermal method. The composition, morphology, specific surface area, pore structure, defect, and elemental chemical state, as well as the optical and photoelectrochemical properties of the prepared catalyst, were characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, N2 adsorption-desorption tests, X-ray photoelectron spectroscopy, photoluminescence spectroscopy, and photoelectrochemical measurements. The absorption ability of the heterojunction for visible and near-infrared light was significantly enhanced owing to the localized surface plasmon resonance effect of the defect and metallic Bi. 90.7% and 78.5% of ciprofloxacin could be decomposed by NVCN/Bi/BiOBr/BiOI within 60 min and 6 h of visible and near-infrared light irradiation, and the corresponding mineralization efficiencies were about 73.1% and 62.1%, respectively. Based on the results of photoelectrochemical measurements and free radical capture experiments, it could be inferred that the boosted full-spectrum catalytic performance of NVCN/Bi/BiOBr/BiOI heterojunction is attributed to the enhanced light absorption, improved separation efficiency, and prolonged lifetime of photogenerated charge carriers, as well as the formation of a double S-scheme charge transfer mechanism.
  • 加载中
    1. [1]

      MIAO S, ZHANG Y Y, YUAN X, ZUO J N. Antibiotic resistance evolution driven synergistically by antibiotics and typical organic pollutants in antibiotic production wastewater[J]. J. Hazard. Mater., 2025,483136543. doi: 10.1016/j.jhazmat.2024.136543

    2. [2]

      ZHUANG S T, WANG J L. Interaction between antibiotics and microplastics: Recent advances and perspective[J]. Sci. Total Environ., 2023,897165414. doi: 10.1016/j.scitotenv.2023.165414

    3. [3]

      SUN Y K, SUN W T, LI Y D, DONG N N, YU H Y, YIN W Y, ZHU F P, GAO B Y, XU S P. Effective inhibition of chloride ion interference in photocatalytic process by negatively charged molecularly imprinted photocatalyst: Behavior and mechanism[J]. Water Res., 2024,262122040. doi: 10.1016/j.watres.2024.122040

    4. [4]

      WANG P P, WANG L T, RAO L M, SHAO J J, YUAN Q X, SHAN S D. Simple and low-cost synthesis of g-C3N4 for efficient sunlight photo-catalytic degradation of antibiotics in biogas slurry[J]. J. Environ. Manage., 2025,377124692. doi: 10.1016/j.jenvman.2025.124692

    5. [5]

      LIN S J, SONG Y, SUN Y J, LIN W J, YU G Y, LIAO X W, YANG Q. Morpholine-modified Ru-based agents with multiple antibacterial mechanisms as metalloantibiotic candidates against Staphylococcus aureus infection[J]. RSC Adv., 2024,14(28):20130-20144. doi: 10.1039/D4RA02667E

    6. [6]

      LIU X T, CHEN S, TANTAI X J, DAI X Y, SHAO S Y, WU M X, SUN P F, DONG X P. Regulating defects in sulfur-doped Bi4O5I2 and constructing S-scheme heterojunctions with g-C3N4 to enhance photo-catalytic antibiotic degradation[J]. Sep. Purif. Technol., 2025,363132001. doi: 10.1016/j.seppur.2025.132001

    7. [7]

      ZHANG Q, ZHENG D, BAI B, MA Z Y, ZONG S C. Insight into antibiotic removal by advanced oxidation processes (AOPs): Performance, mechanism, degradation pathways, and ecotoxicity assessment[J]. Chem. Eng. J., 2024,500157134. doi: 10.1016/j.cej.2024.157134

    8. [8]

      RAN Y H, CUI R Y, WANG X Y, WANG H X, ZHANG L, XU L J, ZHU J M, HUANG Q, YUAN W Y. Advancements in iron-based photocatalytic degradation for antibiotics and dyes[J]. J. Environ. Manage., 2025,374123991. doi: 10.1016/j.jenvman.2024.123991

    9. [9]

      SONG X, LIANG J Y, WANG J, LU L, BELLINI M, RODRÍGUEZ-LUGO R E, MUDDASSIR M, ANSARI I A. Photocatalytic performance of Cd(Ⅱ)-based coordination polymer of efficient antibiotic degradation[J]. J. Water Process Eng., 2025,71107254. doi: 10.1016/j.jwpe.2025.107254

    10. [10]

      YANG J M, TIAN S F, SONG Z, HAO Y G, LU M H. Recent advances in sorption-based photocatalytic materials for the degradation of antibiotics[J]. Coord. Chem. Rev., 2025,523216257. doi: 10.1016/j.ccr.2024.216257

    11. [11]

      YU G L, SUN Q F, YANG Y, CHEN S, LONG Y N, LI Y F, GE S Y, ZHENG D. BiOCl-based composites for photocatalytic degradation of antibiotics: A review of synthesis method, modification, factors affecting photodegradation and toxicity assessment[J]. J. Alloy. Compd., 2024,981173733. doi: 10.1016/j.jallcom.2024.173733

    12. [12]

      XU L P, YU J C, WANG Y. Recent advances on bismuth oxyhalides for photocatalytic CO2 reduction[J]. J. Environ. Sci., 2024,140:183-203. doi: 10.1016/j.jes.2023.07.002

    13. [13]

      ALI Z, MA J L, HONG M, SUN R C. Review: Applications of the functional photocatalysts BiOX (X=Cl, Br, I) for clean energy, the environment, and future photobiorefineries[J]. J. Mater. Chem. A, 2023,11(7):3297-3314. doi: 10.1039/D2TA09877F

    14. [14]

      SUN Y D, ZENG C, ZHANG X, ZHANG Z Q, YANG B, GUO S Q. Tendencies of alloyed engineering in BiOX-based photocatalysts: A state-of-the-art review[J]. Rare Met., 2024,43(4):1488-1512. doi: 10.1007/s12598-023-02569-6

    15. [15]

      LI Q, ZHANG J H, XU W, WANG H Q, ZHOU J Y, CHEN Q G, CHEN J M, CHEN D Z. Oxygen vacancies mediated flower-like BiOX microspheres for photocatalytic purification of methyl mercaptan odor: Significant distinction induced by halogen elements[J]. Chem. Eng. J., 2023,471144658. doi: 10.1016/j.cej.2023.144658

    16. [16]

      ZHANG T, WANG W T, HE M, WANG H, HE Z H, YANG Y, WANG K, LIU Z T. Boosting the solvent-free photocatalytic oxidation of benzylamine to N-benzylenebutylamine over BiOX/TiO2 heterojunction nanoflowers[J]. Sep. Purif. Technol., 2025,356130021. doi: 10.1016/j.seppur.2024.130021

    17. [17]

      ZHANG S F, GUO J, DENG S S, ZHANG R, ZHU Q Y, LIU Y X, LIN X G, LI Y Y. Multifunctional BiOBr/BiOI3D microspheres for improving visible-light-driven photocatalytic degradation and disinfection efficiency[J]. J. Environ. Chem. Eng., 2024,12(3)113017. doi: 10.1016/j.jece.2024.113017

    18. [18]

      ZHANG J X, DANG J J, GUAN W S. Construction of Z-scheme Fe3O4/BiOBr/BiOI heterojunction with magnetically recyclable for enhanced photocatalytic reaction activity[J]. Chem. Eng. Res. Des., 2024,210:382-392. doi: 10.1016/j.cherd.2024.08.043

    19. [19]

      FANG X, YIN C J, CHEN Z H, XUAN L J, ZHANG Z H, GENG X, LIN J, WU J. Synergizing oxygen vacancy engineering and f-electron doping to promote dynamics of rare-earth-doped bismuth oxyhalides for photocatalysis[J]. J. Colloid Interface Sci., 2025,690137311. doi: 10.1016/j.jcis.2025.137311

    20. [20]

      DI G L, SHU R Y, HAN D J, DING J W, CHEN Z F, LI X D, WU X W, ZHAO X L. Oxygen vacancy and boron dual sites enable efficient oxygen activation for emerging contaminant degradation: Boosted exciton dissociation via built-in electric field modulation[J]. Appl. Catal. B-Environ., 2025,362124754. doi: 10.1016/j.apcatb.2024.124754

    21. [21]

      WANG W Y, HU F Y, LI B Q, MA D Q, SHI J, ZHANG Y R, LIU X X, DONG P Y, XI X G, KAWI S. Sulfite-induced surface oxygen vacancy in BiOI for efficient photocatalytic reduction capacity improvement[J]. Appl. Catal. B-Environ., 2025,367125103. doi: 10.1016/j.apcatb.2025.125103

    22. [22]

      TONG H L, ZHANG J N, SUN B M, SHI H, REN N Q, YOU S J, ZHANG G S. Visible-light photocatalytic oxygen activation by oxygen vacancies-rich BiOI for enhanced removal of bisphenol A in water[J]. Environ. Res., 2025121412.

    23. [23]

      JAVED M S, NAZIR M A, SHAFIQ Z, ULLAH S, NAJAM T, IQBAL R, ISMAIL M A, TAMANG T L, SHAH S S A. Advanced materials for photocatalytic removal of antibiotics from wastewater[J]. J. Alloy. Compd., 2025,1010177926. doi: 10.1016/j.jallcom.2024.177926

    24. [24]

      WANG X, ZHANG X F, XIE Y D, SHI Y J, ZHAO C B, LI G L, ZHANG Y B, SHI H X. Construction of novel biochar/g-C3N4/BiOBr heterojunction with S-scheme mechanism for efficient photocatalytic degradation of tetracycline[J]. J. Environ. Chem. Eng., 2024,12(5)113469. doi: 10.1016/j.jece.2024.113469

    25. [25]

      ZHANG X Y, LI W X, HU L Q, GAO M M, FENG J. A tight-connection g-C3N4/BiOBr (001) S-scheme heterojunction photocatalyst for boosting photocatalytic degradation of organic pollutants[J]. Nanomaterials, 2024,14(13)1071. doi: 10.3390/nano14131071

    26. [26]

      WANG J Y, REN P G, ZHANG Y, CAI Z H, CHEN Z Y, JIN Y L, GUO Z Z. Construction of 2D/3D BiOI/g-C3N4 S-scheme heterojunction photocatalysts for photocatalytic degradation of organic pollutants[J]. J. Environ. Manage., 2025,386125789. doi: 10.1016/j.jenvman.2025.125789

    27. [27]

      LI X W, ZHANG W D, CUI W, SUN Y J, JIANG G M, ZHANG Y X, HUANG H W, DONG F. Bismuth spheres assembled on graphene oxide: Directional charge transfer enhances plasmonic photocatalysis and in situ DRIFTS studies[J]. Appl. Catal. B-Environ., 2018,221:482-489. doi: 10.1016/j.apcatb.2017.09.046

    28. [28]

      HE R, WANG Z Z, DENG F, LI X B, PENG Y Z, DENG Y, ZOU J P, LUO X B, LIU X G. Tunable Bi-bridge S-scheme Bi2S3/BiOBr heterojunction with oxygen vacancy and SPR effect for efficient photocatalytic reduction of Cr(Ⅵ) and industrial electroplating wastewater treatment[J]. Sep. Purif. Technol., 2023,311123176. doi: 10.1016/j.seppur.2023.123176

    29. [29]

      ZHANG D, TAN G Q, WANG M, LI B, DANG M Y, REN H J, XIA A. The modulation of g-C3N4 energy band structure by excitons capture and dissociation[J]. Mater. Res. Bull., 2020,122110685. doi: 10.1016/j.materresbull.2019.110685

    30. [30]

      WANG M, XIN D H, LUO D, ZHANG W. Study on the enhancement mechanism of full-spectrum driven photocatalytic activity of g-C3N4/Bi/BiOI heterojunction[J]. Journal of Shaanxi University of Science & Technology, 2023,6(41):111-120.

    31. [31]

      HUSSAIN S A, HU J, LIU H Y, ASLAM F, KHAN S, KHAN L, JIAO F P. Preparation of C-doped g-C3N4 by Co-polycondensation of melamine and sucrose for improved photocatalytic H2 evolution[J]. Int. J. Hydrog. Energy, 2024,87:705-712. doi: 10.1016/j.ijhydene.2024.09.091

    32. [32]

      LI Y F, WANG D, LIU J Y, WANG L, WANG H, WANG S Y, WU B, LIU M Y. γ-PGA-dependent growth of BiOBr nanosheets with exposed {010} facets for enhanced photocatalytic RhB degradation[J]. Appl. Surf. Sci., 2025,688162446. doi: 10.1016/j.apsusc.2025.162446

    33. [33]

      FU H Y, XIAO Y X, ABULIZI A, OKITSU K, REN T Z. Diethanolamine-functionalized BiOI hollow microspheres with negative conduction bands maximize the visible light photocatalytic performance for CO 2 reduction[J]. J. Alloy. Compd., 2024,984173882. doi: 10.1016/j.jallcom.2024.173882

    34. [34]

      KUATE L J N, CHEN Z Z, YAN Y J, LU J L, GUO F, WEN H B, SHI W L. Construction of 2D/3D black g-C3N4/BiOI S-scheme het-erojunction for boosted photothermal-assisted photocatalytic tetracycline degradation in seawater[J]. Mater. Res. Bull., 2024,175112776. doi: 10.1016/j.materresbull.2024.112776

    35. [35]

      CHEN F, MA Z Y, YE L Q, MA T Y, ZHANG T R, ZHANG Y H, HUANG H W. Macroscopic spontaneous polarization and surface oxygen vacancies collaboratively boosting CO2 photoreduction on BiOIO 3 single crystals[J]. Adv. Mater., 2020,32(11)1908350. doi: 10.1002/adma.201908350

    36. [36]

      LIN L, HUANG M J, LONG L P, CHEN D H. Preparation and photo-catalytic activity comparison of BiOBr and BiOI hierarchical micro-spheres photocatalyst[J]. Appl. Chem. Ind., 2014,43(08):1377-1380.

    37. [37]

      WANG M, TAN G Q, REN H J, LV L, XIA A. Enhancement mechanism of full-solar-spectrum catalytic activity of g-C3N4-x/Bi/Bi2O2(CO3)1-x(Br, I)x heterojunction: The roles of plasma Bi and oxygen vacancies[J]. Chem. Eng. J., 2022,430132740. doi: 10.1016/j.cej.2021.132740

    38. [38]

      WANG M, XIN D H, ZHANG W, LUO D, TAN G Q. Defects and plasma Ag co-modified S-scheme Ag/NVs-CN/Bi2O2-δCO3 hetero-junction with multilevel charge transfer channels for boosting full-spectrum-driven degradation of antibiotics[J]. J. Alloy. Compd., 2024,970172672. doi: 10.1016/j.jallcom.2023.172672

    39. [39]

      ZHANG X P, ZHONG Y Y, XIAO T, ZHU X D, JIAO Y, YU Q, QI Z Y. Construction of flower -like BiOI/Bi2O2CO3 p-n heterojunction for photocatalytic degradation of Congo red dye[J]. J. Mol. Struct., 2025,1336142076. doi: 10.1016/j.molstruc.2025.142076

    40. [40]

      BHARATHI K, BAKIYARAJ G, ARCHANA J, NAVANEETHAN M. p-n ZnCr2O4/Bi2O3 heterojunction as an effective photocatalytic degradation of MB and CIP[J]. Opt. Mater., 2025,162116862. doi: 10.1016/j.optmat.2025.116862

    41. [41]

      YAN J Y, ZHANG J W, WANG Y, LV J L, ZHANG H B, TONG Z F, YU Y Q, LIU K. Visible light-driven selective oxidation of multiple organic matters by photocatalysis of BiOX (X=I, Br): New insights into the role of oxygen vacancy generation and electron gain/ loss properties of matter[J]. Sep. Purif. Technol., 2025,361131486. doi: 10.1016/j.seppur.2025.131486

    42. [42]

      WEN C H, LI D G, ZHONG J P, WANG Z Q, HUANG S B, LIU H J, WU J Q, CHEN P, LV W Y, LIU G G. In situ synthesis of S-scheme AgBr/BiOBr for efficient degradation of sulfonamide antibiotics: Synergistic effects of oxygen vacancies and heterojunctions promote exciton dissociation[J]. Chem. Eng. J., 2022,450138075. doi: 10.1016/j.cej.2022.138075

    43. [43]

      TIAN Y, ZHANG K F, ZHAO H R, PENG B, LIANG J X, CHEN H X, HUANG R F, WEI Y Y, CHEN H Y. Synergetic promotional effect of dual oxygen vacancies and 2D/2D TiO2/BiOBr S-scheme heterostructure for boosted photocatalytic oxytetracycline removal[J]. Colloids Surf. A-Physicochem. Eng. Asp., 2025,715136636. doi: 10.1016/j.colsurfa.2025.136636

    44. [44]

      GU D, HE J N, BAI Y, CHEN Z X, LI X R, BADR S A, LI D X, LI C S. Boosting photocatalytic rate via internal electric field on g -C3N4/ CNT/ZnIn2S4-x S-scheme heterojunction nanocomposites[J]. Colloids Surf. A-Physicochem. Eng. Asp., 2025,713136533. doi: 10.1016/j.colsurfa.2025.136533

    45. [45]

      QIAN Z R, ZHANG L, ZHANG Y F, CUI H. Synergistically boosting of CO 2 photoreduction over Bi/BiOBr nanostructure via in-situ formation of oxygen vacancy and metallic Bi[J]. Sep. Purif. Technol., 2023,324124581. doi: 10.1016/j.seppur.2023.124581

    46. [46]

      FU T, HUANG G F, LIU K, LU C M, WANG L X, XU W C, JIANG X D, TONG Z F, HAN B, ZHANG H B. Multifunctional magnetic bentonite induced hierarchical BiOBr coupling Bi nanoparticles and oxygen vacancies for enhanced photocatalytic performance[J]. Sep. Purif. Technol., 2023,306122555. doi: 10.1016/j.seppur.2022.122555

    47. [47]

      WANG M, XIN D H, QIU Y, ZHANG W, WANG Y C, LIU Z R, SHI M, SHI L, TAN G Q. Study on photocatalytic degradation performance of ciprofloxacin by Ag/Bi2O2CO3 Schottky junction[J]. Journal of Shaanxi University of Technology, 2025,43(4):142-160.

    48. [48]

      SHEN M Z, CAI X L, CAO B W, CAO J B, ZHAO P, XU Y H. Construction of an S-scheme AgBr/BiOBr heterojunction by in situ hydrolysis for highly efficient photocatalytic reduction of CO2 into CO[J]. J. Alloy. Compd., 2024,1009176905. doi: 10.1016/j.jallcom.2024.176905

    49. [49]

      WANG M, TAN G Q, FENG S J, DANG M Y, WANG Y, ZHANG B X, REN H J, LV L, XIA A, LIU W L, LIU Y. Defects and internal electric fields synergistically optimized g-C3N4-x/BiOCl/WO2.92 heterojunction for photocatalytic NO deep oxidation[J]. J. Hazard. Mater., 2021,408124897. doi: 10.1016/j.jhazmat.2020.124897

    50. [50]

      HUANG X Z, XU L H, YANG Y, WANG L M, LIU Z Y, WANG Z J. Preparation and visible light responsive photocatalytic properties of BiSbO 4/BiOBr[J]. Chinese J. Inorg. Chem., 2025,41(2):284-292. doi: 10.11862/CJIC.20240212

    51. [51]

      CHANKHANITTHA T, JOHNSON B, BUSHBY R J, BUTBUREE T, KHEMTHONG P, NANAN S. One-pot hydrothermal synthesis of g-C3N4/BiOBr/Bi2MoO6 as a Z-scheme heterojunction for efficient photocatalytic degradation of ciprofloxacin (CIP) antibiotic and rhodamine B (RhB) dye[J]. J. Alloy. Compd., 2024,1008176764. doi: 10.1016/j.jallcom.2024.176764

    52. [52]

      WANG R, WU J, MAO X, WANG J M, LIU Q Z, QI Y F, HE P, QI X M, LIU G L, GUAN Y. Bi spheres decorated g-C3N4/BiOI Z-scheme heterojunction with SPR effect for efficient photocatalytic removal elemental mercury[J]. Appl. Surf. Sci., 2021,556149804. doi: 10.1016/j.apsusc.2021.149804

    53. [53]

      DU H Y, MA Y H, DU X Q, ZHANG W T, CHEN X F. 3D/2D CuBi2O4@Bi2O2CO3 Z-scheme heterojunction: The construction of adsorption-photocatalytic synergistic effect for tetracycline hydro-chloride removal[J]. J. Environ. Chem. Eng., 2023,11(5)110501. doi: 10.1016/j.jece.2023.110501

    54. [54]

      QI Y, ZHANG J J, LI W Y, ZHANG X C, GUO T Y, ZHANG C. Facile construction of SPR effect assisted Bi2O2CO3/Bi/BiOCl Z-scheme heterostructure for robust photocatalytic decontamination of RhB[J]. Appl. Surf. Sci., 2024,669160543. doi: 10.1016/j.apsusc.2024.160543

    55. [55]

      WANG M, XIN D H, TAN G Q, QIU Y, ZHANG W, SHI M, SHI L. Defects and polarization charge cooperatively optimized Z-scheme NVs-g-C3N4/Bi/BiO1-xI heterojunction for full-spectrum catalytic organic pollutants mineralization and NO deep oxidation[J]. J. Alloy. Compd., 2025,1027180651. doi: 10.1016/j.jallcom.2025.180651

    56. [56]

      MA X Y, CHEN Q F, CHEN J X, LIAO Y J, CAI L T, CHEN L S, WANG N N, ZHU Y Q, HUANG Z Y. Construction and in-situ thermodynamics/kinetics studies on Ag-bridged g-C3N4-{002}/BiOBr -{001} facet Z-scheme heterojunction with crystal plane synergistic effect based on photocalorimetry-spectroscopy technology[J]. J. Catal., 2022,413:891-906. doi: 10.1016/j.jcat.2022.07.040

    57. [57]

      HE J, WANG X D, JIN S B, LIU Z Q, ZHU M S. 2D metal-free heterostructure of covalent triazine framework/g-C3N4 for enhanced photo-catalytic CO2 reduction with high selectivity[J]. Chin. J. Catal., 2022,43(5):1306-1315. doi: 10.1016/S1872-2067(21)63936-0

    58. [58]

      PENG X Y, TIAN J Y, ZHANG S, XIAO W, TIAN X Z, WANG Y B, XUE J Q, LEI D S. Z-scheme transfer pathway assisted photoelectro-catalyst Zn2SnO4/rGO/Ag/AgBr for organic pollutants treatment[J]. Colloids Surf. A-Physicochem. Eng. Asp., 2023,657130552. doi: 10.1016/j.colsurfa.2022.130552

    59. [59]

      GE W, LIU K, DENG S K, SHEN L X, YANG P Z. Z-scheme g-C3N4/Bi6Fe1.5Co0.5Ti3O18 heterojunctions with enhanced visible-light photo-catalytic activity towards organics degradation[J]. Appl. Surf. Sci., 2022,572151289. doi: 10.1016/j.apsusc.2021.151289

    60. [60]

      WANG H, SUN X S, LI D D, ZHANG X D, CHEN S C, SHAO W, TIAN Y P, XIE Y. Boosting hot-electron generation: Exciton dissociation at the order-disorder interfaces in polymeric photocatalysts[J]. J. Am. Chem. Soc., 2017,139(6):2468-2473. doi: 10.1021/jacs.6b12878

    61. [61]

      XUE W H, LIU Y X, MA X Y, YE J, BAI X, ZHAO J, LIU B. Tuning the equilibrium of excitons and carriers in the (001) plane-exposed bismuth oxyhalide enables efficient selective photocatalytic oxidation of 5-hydroxymethylfurfural[J]. ACS Catal., 2025,15(11):9621-9632. doi: 10.1021/acscatal.5c01486

    62. [62]

      ZHAO Q, GUO Z N, LI S Y, WANG J L, LI Z P, JIA Z F, WANG K W, GUO Y. Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties[J]. Chinese J. Inorg. Chem., 2024,40(5):885-894. doi: 10.11862/CJIC.20230435

    63. [63]

      ASADPOOR R, HABIBI D, AGHABABAEI N. Integrated dual Z-scheme n-n-p/Schottky junctions upon Ni-ZnO/Bi2WO6/PANI for increased photocatalytic ciprofloxacin degradation under visible light[J]. Sep. Purif. Technol., 2025,363132060. doi: 10.1016/j.seppur.2025.132060

    64. [64]

      RUAN X W, MENG D P, HUANG C X, XU M H, JIAO D X, CHENG H, CUI Y, LI Z Y, BA K K, XIE T F, ZHANG L, ZHANG W, LENG J, JIN S Y, RAVI S K, JIANG Z F, ZHENG W T, CUI X Q, YU J G. Artificial photosynthetic system with spatial dual reduction site enabling enhanced solar hydrogen production[J]. Adv. Mater., 2024,36(9)2309199. doi: 10.1002/adma.202309199

    65. [65]

      CHEN X, GUO R T, PAN W G, YUAN Y, HU X, BI Z X, WANG J. A novel double S-scheme photocatalyst Bi7O9I3/Cd0.5Zn0.5S QDs/ WO3-x with efficient full-spectrum-induced phenol photodegradation[J]. Appl. Catal. B-Environ., 2022,318121839. doi: 10.1016/j.apcatb.2022.121839

    66. [66]

      XIN D H, WANG M, YANG Y, ZHANG W. Preparation of double S-scheme NaBiO3/BiO2-x/Bi2O2CO3 heterojunction and the enhancement mechanism of full-spectrum driven degradation activity toward antibiotics[J]. Opt. Mater., 2024,154115756. doi: 10.1016/j.optmat.2024.115756

    67. [67]

      SONG Y Y, SUN X B, NGHIEM L D, DUAN J, LIU W, LIU Y D, CAI Z Q. Novel ultrathin Bi@Fe-based metal-organic frameworks nanosheets for efficient solar-driven photocatalytic water purification: Synergistic effect of localized surface plasmon resonance and high-density exposed metal active centers[J]. J. Colloid Interface Sci., 2025,689137250. doi: 10.1016/j.jcis.2025.137250

    68. [68]

      YANG J J, LI L, XIAO C, XIE Y. Dual-plasmon resonance coupling promoting directional photosynthesis of nitrate from air[J]. Angew. Chem.-Int. Edit., 2023,62(47)e202311911. doi: 10.1002/anie.202311911

  • 加载中
    1. [1]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    2. [2]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    3. [3]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    4. [4]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    5. [5]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    6. [6]

      Xiaofan ZHANGYu DUANMeijie SHINan LURenhong LIXiaoqing YAN . Z-scheme Co3O4/BiOBr heterojunction for efficient photoreduction CO2 reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1878-1888. doi: 10.11862/CJIC.20250079

    7. [7]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    10. [10]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    11. [11]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    12. [12]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    13. [13]

      Jiayao WangGuixu PanNing WangShihan WangYaolin ZhuYunfeng Li . Preparation of donor-π-acceptor type graphitic carbon nitride photocatalytic systems via molecular level regulation for high-efficient H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(12): 100168-0. doi: 10.1016/j.actphy.2025.100168

    14. [14]

      Jin ZHANGYuting WANGBin YUYuxin ZHONGYufeng ZHANG . Corn straw-derived carbon/BiOBr composite: Synthesis and photocatalytic degradation performance for rhodamine B. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1397-1408. doi: 10.11862/CJIC.20250028

    15. [15]

      Kun RongCuilian WenJiansen WenXiong LiQiugang LiaoSiqing YanChao XuXiaoliang ZhangBaisheng SaZhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-0. doi: 10.1016/j.actphy.2025.100053

    16. [16]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    17. [17]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    18. [18]

      Jingjing LiuAoqi WeiHao ZhangShuwang Duo . SnS2-based heterostructures: advances in photocatalytic and gas-sensing applications. Acta Physico-Chimica Sinica, 2025, 41(12): 100185-0. doi: 10.1016/j.actphy.2025.100185

    19. [19]

      Ruiyun LiuPing WangXuefei WangFeng ChenHuogen Yu . Work-function-engineered Mo 4d electronic structure modulation in Mo2C MXene cocatalyst for efficient photocatalytic H2 evolution. Acta Physico-Chimica Sinica, 2025, 41(11): 100137-0. doi: 10.1016/j.actphy.2025.100137

    20. [20]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-0. doi: 10.3866/PKU.WHXB202402016

Metrics
  • PDF Downloads(0)
  • Abstract views(589)
  • HTML views(46)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return