Citation: Tong WU, Yi ZHONG, Weimin ZHAO, Hong XU, Zhiping MAO, Linping ZHANG. BiOBr/NH2-MIL-101(Fe): Preparation and performance on photocatalytic reduction of CO2[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(9): 1765-1775. doi: 10.11862/CJIC.20250103 shu

BiOBr/NH2-MIL-101(Fe): Preparation and performance on photocatalytic reduction of CO2

  • Corresponding author: Linping ZHANG, zhang_lp@dhu.edu.cn
  • Received Date: 26 March 2025
    Revised Date: 8 July 2025

Figures(14)

  • BiOBr/NH2-MIL-101(Fe) composite photocatalysts were prepared by compositing BiOBr and NH2-MIL-101(Fe) using a solvothermal method and used for the photocatalytic reduction of greenhouse gases CO2. The structure and properties of the composite photocatalysts were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscope spectroscopy-energy dispersive X-ray spectroscopy, UV-Vis diffuse reflectance spectroscopy, photoluminescence spectroscopy, and electrochemical impedance spectroscopy. The photocatalytic CO2 reduction performance study revealed that the activity of BiOBr/NH2-MIL-101(Fe) was significantly superior to that of pure BiOBr. The composite catalyst prepared with the molar ratio of NH2-MIL-101(Fe) to BiOBr of 0.09 showed the best catalytic activity, and the CH3OH yield in the pure aqueous system reached 49.68 μmol·g-1 after reacting under visible light irradiation for 6 h. The BiOBr/NH2-MIL-101(Fe) heterojunction achieved rapid elimination of low-energy streams and effective separation and enrichment of high-energy carriers, which enabled the CH3OH yield photocatalytic produced by BiOBr/NH2-MIL-101(Fe)-0.09 to be 2.94 times that of pure BiOBr. This catalyst demonstrated good recycling performance, with a yield of 84.9% still achievable after the first five cycles.
  • 加载中
    1. [1]

      CHEN Y, WANG D K, DENG X Y, LI Z H. Metal-organic frameworks (MOFs) for photocatalytic CO2 reduction[J]. Catal. Sci. Technol., 2017, 7(21): 4893-4904  doi: 10.1039/C7CY01653K

    2. [2]

      FU J W, JIANG K X, QIU X Q, YU J G, LIU M. Product selectivity of photocatalytic CO2 reduction reactions[J]. Mater. Today, 2020, 32: 222-243  doi: 10.1016/j.mattod.2019.06.009

    3. [3]

      LV H W, LI P Y, LI X J, CHEN A C, SA R J, ZHU H, WANG R H. Boosting photocatalytic reduction of the diluted CO2 over covalent organic framework[J]. Chem. Eng. J., 2023, 451: 138745  doi: 10.1016/j.cej.2022.138745

    4. [4]

      DI J, XIA J X, JI M X, WANG B, YIN S, HUANG Y, CHEN Z G, LI H M. New insight of Ag quantum dots with the improved molecular oxygen activation ability for photocatalytic applications[J]. Appl. Catal. B‒Environ., 2016, 188: 376-387  doi: 10.1016/j.apcatb.2016.01.062

    5. [5]

      JIA X M, CAO J, LIN H, ZHANG M Y, GUO X M, CHEN S F. Transforming type-Ⅰ to type-Ⅱ heterostructure photocatalyst via energy band engineering: A case study of I-BiOCl/I-BiOBr[J]. Appl. Catal. B‒Environ., 2017, 204: 505-514  doi: 10.1016/j.apcatb.2016.11.061

    6. [6]

      ZHANG G, SU A, QU J W, XU Y. Synthesis of BiOI flowerlike hierarchical structures toward photocatalytic reduction of CO2 to CH4[J]. Mater. Res. Bull., 2014, 55: 43-47  doi: 10.1016/j.materresbull.2014.04.012

    7. [7]

      GUO J Q, LIAO X, LEE M H, HYETT G, HUANG C C, HEWAK D W, MAILIS S, ZHOU W, JIANG Z. Experimental and DFT insights of the Zn-doping effects on the visible-light photocatalytic water splitting and dye decomposition over Zn-doped BiOBr photocatalysts[J]. Appl. Catal. B‒Environ., 2019, 243: 502-512  doi: 10.1016/j.apcatb.2018.09.089

    8. [8]

      DI J, CHEN C, ZHU C, SONG P, DUAN M L, XIONG J, LONG R, XU M Z, KANG L X, GUO S S. Cobalt nitride as a novel cocatalyst to boost photocatalytic CO2 reduction[J]. Nano Energy, 2021, 79: 105429  doi: 10.1016/j.nanoen.2020.105429

    9. [9]

      DI J, SONG P, ZHU C, CHEN C, XIONG J, DUAN M L, LONG R, ZHOU W Q, XU M Z, KANG L X. Strain-engineering of Bi12O17Br2 nanotubes for boosting photocatalytic CO2 reduction[J]. ACS Mater. Lett., 2020, 2(8): 1025-1032  doi: 10.1021/acsmaterialslett.0c00306

    10. [10]

      KONG X Y, NG B G, TAN K H, CHEN X F, WANG H T, MOHAMED A R, CHAI S P. Simultaneous generation of oxygen vacancies on ultrathin BiOBr nanosheets during visible-light-driven CO2 photoreduction evoked superior activity and long-term stability[J]. Catal. Today, 2018, 314: 20-27  doi: 10.1016/j.cattod.2018.04.018

    11. [11]

      SUN K, QIAN Y, JIANG H L. Metal-organic frameworks for photocatalytic water splitting and CO2 reduction[J]. Angew. Chem. ‒Int. Edit., 2023, 135(15): e202217565  doi: 10.1002/ange.202217565

    12. [12]

      PANG W Y, DU X, YANG Y T, LONG C, LI Y T, HU C Y, XU R H, TIAN M, XIE J J, WANG W J. Oxygen atom coordinative position inducing catalytic sites structure reconstruction for enhanced photocatalytic H2 evolution[J], Adv. Funct. Mater., 2024, 34(29): 2400466  doi: 10.1002/adfm.202400466

    13. [13]

      ZHAO K, PANG W, JIANG SY, HU C Y, LIU P R, CUI D D, AN X F, TIAN B J, GAO C, ZHANG P. Operando reconstruction-induced CO2 reduction activity and selectivity for cobalt-based photocatalysis[J]. Nano Res., 2023, 16(4): 4812-4820  doi: 10.1007/s12274-023-5432-5

    14. [14]

      JIANG S Y, LIU J X, ZHAO K, CUI D D, ZHAO H J. Ru(bpy)32+-sensitized {001} facets LiCoO2 nanosheets catalyzed CO2 reduction reaction with 100% carbonaceous products[J]. Nano Res., 2022, 15(2): 1061-1068  doi: 10.1007/s12274-021-3599-1

    15. [15]

      XU Q Z, SUN Y T, LV T, LIU H. Selective CO2 photoreduction into CO over Ti3C2 quantum dots decorated NH2-MIL-101(Fe) heterostructures[J]. J. Alloy. Compd., 2023, 954: 170088  doi: 10.1016/j.jallcom.2023.170088

    16. [16]

      YANG Q, CHEN D, CHU L B, WANG J L. Enhancement of ionizing radiation-induced catalytic degradation of antibiotics using Fe/C nanomaterials derived from Fe-based MOFs[J]. J. Hazard. Mater., 2020, 389: 122148  doi: 10.1016/j.jhazmat.2020.122148

    17. [17]

      LIU J, YU B, WANG Z G, WANG P, CHEN M H, ZHU X B. High-performance air filters via NH2-MIL-101 deposition on cellulosic paper substrate[J]. Int. J. Biol. Macromol., 2025, 307: 141987  doi: 10.1016/j.ijbiomac.2025.141987

    18. [18]

      LI S J, DONG K X, CAI M J, LI X Y, CHEN X B. A plasmonic S-scheme Au/MIL-101 (Fe)/BiOBr photocatalyst for efficient synchronous decontamination of Cr􀃱 and norfloxacin antibiotic[J]. eScience, 2024, 4(2): 100208  doi: 10.1016/j.esci.2023.100208

    19. [19]

      YANG Z C, LI J, CHENG F X, CHEN Z, DONG X P. BiOBr/protonated graphitic C3N4 heterojunctions: Intimate interfaces by electrostatic interaction and enhanced photocatalytic activity[J]. J. Alloy. Compd., 2015, 634: 215-222  doi: 10.1016/j.jallcom.2015.02.103

    20. [20]

      LI X L, LIU T, ZHANG Y, CAI J F, HE M Q, LI M Q, CHE Z G, ZHANG L S. Growth of BiOBr/ZIF-67 nanocomposites on carbon fiber cloth as filter-membrane-shaped photocatalyst for degrading pollutants in flowing wastewater[J]. Adv. Fiber Mater., 2022, 4(6): 1620-1631  doi: 10.1007/s42765-022-00189-w

    21. [21]

      ZHAO Q, YI X H, WANG C C, WANG P, ZHENG W W. Photocatalytic Cr􀃱 reduction over MIL-101(Fe)-NH2 immobilized on alumina substrate: From batch test to continuous operation[J]. Chem. Eng. J., 2022, 429: 132497  doi: 10.1016/j.cej.2021.132497

    22. [22]

      LI S J, CAI M J, LIU Y P, WANG C C, YAN R Y, CHEN X B. Constructing Cd0.5Zn0.5S/Bi2WO6 S-scheme heterojunction for boosted photocatalytic antibiotic oxidation and Cr􀃱 reduction[J]. Adv. Powder Mater., 2023, 2(1): 100073  doi: 10.1016/j.apmate.2022.100073

    23. [23]

      ZHAO F P, LIU Y P, HAMOUDA S B, DOSHI B, GUIJIARRO N, MIN X B, TANG C J, SILLANPAA M, SIVULA K, WANG S B. MIL-101(Fe)/g-C3N4 for enhanced visible-light-driven photocatalysis toward simultaneous reduction of Cr􀃱 and oxidation of bisphenol A in aqueous media[J]. Appl. Catal. B‒Environ., 2020, 272: 119033  doi: 10.1016/j.apcatb.2020.119033

    24. [24]

      LI S J, CAI M J, LIU Y P, WANG C C, LV K L, CHEN X B. S-Scheme photocatalyst TaON/Bi2WO6 nanofibers with oxygen vacancies for efficient abatement of antibiotics and Cr􀃱: Intermediate eco-toxicity analysis and mechanistic insights[J]. Chin. J. Catal., 2022, 43(10): 2652-2664  doi: 10.1016/S1872-2067(22)64106-8

    25. [25]

      XIA T T, ZENG B Y, JIANG J W, WU T H, PANG W Y, WANG W J, ZHANG J, ZHAO K. Photothermal effect promoting the reconstruction and mass-energy transfer for the enhancement of three-dimensional confinement catalysis[J]. Mater. Chem. Front., 2025, 9: 1312-1329  doi: 10.1039/D4QM00743C

    26. [26]

      LI B F, WEI F, SU B, GUO Z, DING Z X, YANG M Q, WANG S B. Mesoporous cobalt tungstate nanoparticles for efficient and stable visible-light-driven photocatalytic CO2 reduction[J]. Mater. Today Energy, 2022, 24: 100943  doi: 10.1016/j.mtener.2022.100943

    27. [27]

      LIU J Y, QIN W Z, WANG Y Q, XU Q H, XIE Y, CEHN Y, DAI Y H, ZAHNG W. NH2-UiO-66 modification BiOBr enhancement photoreduction CO2 to CO[J]. Sep. Purif. Technol., 2024, 344: 127289  doi: 10.1016/j.seppur.2024.127289

    28. [28]

      CAO J, XU B Y, LIN H L, LUO B D, CHEN S F. Chemical etching preparation of BiOI/BiOBr heterostructures with enhanced photocatalytic properties for organic dye removal[J]. Chem. Eng. J., 2012, 185: 91-99

    29. [29]

      GUO H W, ZHANG T X, MA W H, CHENG S W, DING J, QIN Z, SIBUDJING K. Construction of sandwich-like Ag/UiO-66@g-C3N4 Z-scheme ternary heterojunction for photocatalytic CO2 conversion to CH3OH and CO[J]. Fuel, 2023, 344: 127911  doi: 10.1016/j.fuel.2023.127911

    30. [30]

      CHEN R J, WANG KL, DING J, ZHANG J F, WAN H, GUAN G F. Microwave-assisted construction of Bi2MoO6/g-C3N4 heterostructure for boosting photocatalytic CO2 conversion[J]. J. Alloy. Compd., 2023, 960: 170605  doi: 10.1016/j.jallcom.2023.170605

    31. [31]

      LI J, PAN W F, LIU Q Y, CHEN Z Q, CHEN Z J, FENG X Z, CHEN H. Interfacial engineering of Bi19Br3S27 nanowires promotes metallic photocatalytic CO2 reduction activity under near-infrared light irradiation[J]. J. Am. Chem. Soc., 2021, 143(17): 6551-6559  doi: 10.1021/jacs.1c01109

    32. [32]

      ZHANG J, SHAO S, ZHOU D S, XU Q L, WANG T L. ZnO nanowire arrays decorated 3D N-doped reduced graphene oxide nanotube framework for enhanced photocatalytic CO2 reduction performance[J]. J. CO2 Util., 2021, 50: 101584  doi: 10.1016/j.jcou.2021.101584

    33. [33]

      MADHUSUDAN P, SHI R, XIANG S L, JIN M T, CHANDRASHEKAR B N, WANG J W, WANG W J, PENG O W, AMINI A, CEHNG C. Construction of highly efficient Z-scheme ZnxCd1-xS/Au@g-C3N4 ternary heterojunction composite for visible-light-driven photocatalytic reduction of CO2 to solar fuel[J]. Appl. Catal. B‒Environ., 2021, 282: 119600  doi: 10.1016/j.apcatb.2020.119600

    34. [34]

      WU J, XIE Y, LING Y, SI J C, LI X, WANG J L, YE H, ZHAO J S, LI S Q, ZHAO Q D. One-step synthesis and Gd3+ decoration of BiOBr microspheres consisting of nanosheets toward improving photocatalytic reduction of CO2 into hydrocarbon fuel[J]. Chem. Eng. J., 2020, 400: 125944  doi: 10.1016/j.cej.2020.125944

  • 加载中
    1. [1]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    4. [4]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    5. [5]

      Xianghai SongXiaoying LiuZhixiang RenXiang LiuMei WangYuanfeng WuWeiqiang ZhouZhi ZhuPengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055

    6. [6]

      Yuejiao AnWenxuan LiuYanfeng ZhangJianjun ZhangZhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021

    7. [7]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    8. [8]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    9. [9]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

    10. [10]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    11. [11]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    12. [12]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    13. [13]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    14. [14]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    15. [15]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    16. [16]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    17. [17]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    18. [18]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    19. [19]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    20. [20]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

Metrics
  • PDF Downloads(1)
  • Abstract views(135)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return