Citation: Yingyue ZHANG, Liuqing KANG, Yating YANG, Xiaofen GUAN, Wenmin WANG. Crystal structure and antibacterial activity of two Gd2 complexes based on polydentate Schiff-base ligands[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(9): 1867-1877. doi: 10.11862/CJIC.20250100 shu

Crystal structure and antibacterial activity of two Gd2 complexes based on polydentate Schiff-base ligands

Figures(6)

  • Two Gd2 complexes, namely [Gd2(dbm)2(HL1)2(CH3OH)2]·4CH3OH (1) and [Gd2(dbm)2(L2)2(CH3OH)2]·2CH3OH (2), where H3L1=(Z)-N′-[4-(diethylamino)-2-hydroxybenzylidene]-2-hydroxyacetohydrazide, H2L2=(E)-N′- (5-bromo-2-hydroxy-3-methoxybenzylidene)nicotinohydrazide, Hdbm=dibenzoylmethane, have been constructed by adopting the solvothermal method. Structural characterization unveils that both complexes 1 and 2 are constituted by two Gd3+ ions, two dbm- ions, two CH3OH molecules, and two polydentate Schiff-base ligands (HL12- or L22-). In addition, complex 1 contains four free methanol molecules, whereas complex 2 harbors two free methanol molecules. By investigating the interactions between complexes 1 and 2 and four types of bacteria (Bacillus subtilis, Escherichia coli, Staphylococcus aureus, Candida albicans), it was found that both complexes 1 and 2 exhibited potent antibacterial activities. The interaction mechanisms between the ligands H3L1, H2L2, complexes 1 and 2, and calf thymus DNA (CT-DNA) were studied using ultraviolet-visible spectroscopy, fluorescence titration, and cyclic voltammetry. The results demonstrated that both complexes 1 and 2 can intercalate into CT-DNA molecules, thereby inhibiting bacterial proliferation to achieve the antibacterial effects.
  • 加载中
    1. [1]

      LI H Y, KONG X J, HAN S D, PANG J, HE T, WANG G M, BU X H. Metalation of metal-organic frameworks: Fundamentals and applications[J]. Chem. Soc. Rev., 2024, 53: 5626-5627  doi: 10.1039/D3CS00873H

    2. [2]

      GUPTA D K, KUMAR S, WANI M Y. MOF magic: Zirconium-based frameworks in theranostic and bio-imaging applications[J]. J. Mater. Chem. B, 2024, 12: 2691-2710  doi: 10.1039/D3TB02562D

    3. [3]

      ZHANG J, KE X, HUANG M, PEI X Y, GAO S, WU D, CHEN J Y, WENG Y J. NO released via both a Cu-MOF-based donor and surface-catalyzed generation enhances anticoagulation and antibacterial surface effects[J]. Biomater. Sci., 2023, 11(1): 322-338  doi: 10.1039/D2BM01515C

    4. [4]

      LIANG F, LIANG J Q, GAO D, KONG L H, HUANG S, GUO Y Y, LIU C K, DING T. Two In-MOFs with gas adsorption and separation capability based on different pyridinyl carboxylate linkers[J]. CrystEngComm, 2024, 26: 1032-1038  doi: 10.1039/D3CE01034A

    5. [5]

      XU Y P, WANG Z Q, TAN H Z, JING K Q, XU Z N, GUO G C. Lewis acid sites in MOFs supports promoting the catalytic activity and selectivity for CO esterification to dimethyl carbonate[J]. Catal. Sci. Technol., 2020, 10(6): 1699-1707  doi: 10.1039/C9CY02330E

    6. [6]

      DHAKSHINAMOORTHY A, LI Z H, YANG S, GARCIA H. Metal-organic framework heterojunctions for photocatalysis[J]. Chem. Soc. Rev., 2024, 53: 3002-3035  doi: 10.1039/D3CS00205E

    7. [7]

      CUI Y, ZHANG J, HE H, QIAN G. Photonic functional metal-organic frameworks[J]. Chem. Soc. Rev., 2018, 47(15): 5740-5785  doi: 10.1039/C7CS00879A

    8. [8]

      XING F, XU J, ZHOU Y X, YU P Y, ZHE M, XIANG Z, DUAN X, RITZ U. Recent advances in metal-organic frameworks for stimuli- responsive drug delivery[J]. Nanoscale, 2024, 16(9): 4434-4483  doi: 10.1039/D3NR05776C

    9. [9]

      NGUYEN N T T, NGUYEN T T T, GE S B, LIEW R K, THI D Y, NGUYEN C, TRAN T V. Recent progress and challenges of MOF-based nanocomposites in bioimaging, biosensing and biocarriers for drug delivery[J]. Nanoscale Adv., 2024, 6: 1800-1821  doi: 10.1039/D3NA01075A

    10. [10]

      DAS A, BEJ S, PANDIT N R, BANERJEE P, BISWAS B. Recent advancements of metal-organic frameworks in sensing platforms: Relevance in the welfare of the environment and the medical sciences with regard to cancer and SARS-CoV-2[J]. J. Mater. Chem. A, 2023, 11(12): 6090-6128  doi: 10.1039/D2TA07938K

    11. [11]

      MARU K, SINGH A, JANGIR R, JANGIR K K. Amyloid detection in neurodegenerative diseases using MOFs[J]. J. Mater. Chem. B, 2024, 12: 4553-4573  doi: 10.1039/D4TB00373J

    12. [12]

      WANG X R, GOPALSAMY K, CLAVIER G, MAURIN G, DING B, TISSOT A, SERRE C. Lanthanide MOF-based luminescent sensor arrays for the detection of castration-resistant prostate cancer curing drugs and biomarkers[J]. Chem. Sci., 2024, 15(17): 6488-6499  doi: 10.1039/D3SC06899D

    13. [13]

      HAMARAWF R F. Antibacterial, antibiofilm, and antioxidant activities of two novel metal-organic frameworks (MOFs) based on 4, 6- diamino-2-pyrimidinethiol with Zn and Co metal ions as coordination polymers[J]. RSC Adv., 2024, 14(13): 9080-9098  doi: 10.1039/D4RA00545G

    14. [14]

      ELMEHRATH S, AHSAN K, MUMAWAR N, ALZAMIL A L, NGUYEN H, GREISH Y. Antibacterial efficacy of copper-based metal-organic frameworks against Escherichia coli and Lactobacillus[J]. RSC Adv., 2024, 14(22): 15821-15831  doi: 10.1039/D4RA01241K

    15. [15]

      AN Y W, FANG X K, CHENG J, YANG S Y, CHEN Z G, TONG Y L. Research progress of metal-organic framework nanozymes in bacterial sensing, detection, and treatment[J]. RSC Med. Chem., 2024, 15(2): 380-398  doi: 10.1039/D3MD00581J

    16. [16]

      CHEN S Q, PANG H K, SUN J N, LI K X. Research advances and applications of ZIF-90 metal-organic framework nanoparticles in the biomedical field[J]. Mater. Chem. Front., 2024, 8(5): 1195-1211  doi: 10.1039/D3QM01020A

    17. [17]

      LI S W, LIN Y H, MO C Z, BI J M, LIU C X, LU Y, JIA B, XU S M, LIU Z N. Application of metal-organic framework materials in regenerative medicine[J]. J. Mater. Chem. B, 2024, 12(35): 8543-8576  doi: 10.1039/D4TB00226A

    18. [18]

      POSTEK W, PACOCHA N, GSRSTECKI P. Microfluidics for antibiotic susceptibility testing[J]. Lab Chip, 2022, 22: 3637-3662  doi: 10.1039/D2LC00394E

    19. [19]

      LUO H, YIN X Q, TAN P F, GU Z P, LIU Z M, TAN L. Polymeric antibacterial materials: Design, platforms and applications[J]. J. Mater. Chem. B, 2021, 9(12): 2802-2815  doi: 10.1039/D1TB00109D

    20. [20]

      HAN D, LIU X, WU S. Metal organic framework-based antibacterial agents and their underlying mechanisms[J]. Chem. Soc. Rev., 2022, 51(16): 7138-7169  doi: 10.1039/D2CS00460G

    21. [21]

      LIU Y W, ZHOU L Y, DONG Y, WANG R, PAN Y, ZHUANG S, LIU D, LIU J Q. Recent developments on MOF-based platforms for antibacterial therapy[J]. RSC Med. Chem., 2021, 12: 915-928  doi: 10.1039/D0MD00416B

    22. [22]

      CHEN P, HE X H, PANG M B, DONG X T, ZHAO S, WEN Z. Iodine capture using Zr-based metal-organic frameworks (Zr-MOFs): Adsorption performance and mechanism[J]. ACS Appl. Mater. Interfaces, 2020, 12(18): 20429-20439  doi: 10.1021/acsami.0c02129

    23. [23]

      DING A, HE Y P, CHEN F F, YU Y. Antibacterial activity of M-MOF nanomaterials (M=Fe, Co, Ni, Cu, and Zn): Impact of metal centers[J]. ACS Appl. Mater. Interfaces, 2024, 7(21): 24571-24580

    24. [24]

      LIAO X W, ZHAO X P, TAN Z, WANG C, LIU W Y. Au nanoparticles in 2D bimetallic metal-organic frameworks with enhanced plasmonic nanozyme activity for antibacterial therapy[J]. ACS Appl. Mater. Interfaces, 2022, 5(11): 16145-16153

    25. [25]

      GHOSH M K, PATHAK S, GHORAI T K. Synthesis of two mononuclear Schiff base metal (M=Fe, Cu) complexes: MOF structure, dye degradation, H2O2 sensing, and DNA binding property[J]. ACS Omega, 2019, 4(14): 16068-16079  doi: 10.1021/acsomega.9b02268

    26. [26]

      LIN C B, GUO K K, GUO W X, WANG Y H, WANG K, LI Y, ZHANG S H, ZHANG X Q, ZHANG Y Q, LIANG F P. Rationally designing metal-organic frameworks based on [Ln2] magnetic building blocks utilizing 2-hydroxyisophthalate and fine-tuning the magnetic properties of Dy analogues by terminal coordinated solvents[J]. Inorg. Chem., 2020, 59(23): 16924-16935  doi: 10.1021/acs.inorgchem.0c01956

    27. [27]

      MAVRAGANI N, KITOS A A, MANSIKKMÄKI A, MURUGESU M. New members of radical bridged Ln2 metallocene single-molecule magnets based on the unsubstituted 1, 2, 4, 5-tetrazine ligand[J]. Inorg. Chem. Front., 2023, 10(1): 259-266  doi: 10.1039/D2QI02164A

    28. [28]

      YUAN F, MA H X, YUAN C M, ZHOU C S, HU H M, KUNAR A, MUDDASSIR M. Syntheses of a series of lanthanide metal-organic frameworks for efficient UV-light-driven dye degradation: Experiment and simulation[J]. CrystEngComm, 2021, 23(12): 2404-2413  doi: 10.1039/D0CE01245A

    29. [29]

      ZHANG X J, XING Y H, SUN Z, HAN J, ZHANG Y H, GE M F, NIU S Y. A series of two-dimensional metal-organic frameworks based on the assembly of rigid and flexible carboxylate-containing mixed ligands with lanthanide metal salts[J]. Cryst. Growth Des., 2007, 7(10): 2041-2046  doi: 10.1021/cg070511y

    30. [30]

      SCHAFHEIMER N, WANG Z, SCHEY K, KING J. Tyrosine/cysteine cluster sensitizing human γD-crystallin to ultraviolet radiation-induced photoaggregation in vitro[J]. Biochemistry, 2014, 53(6): 979-990  doi: 10.1021/bi401397g

    31. [31]

      LIU Z C, WANG B D, LI B, WANG Q, YANG Z Y, LI T R, LI Y. Crystal structures, DNA-binding and cytotoxic activities studies of Cu􀃭 complexes with 2-oxo-quinoline-3-carbaldehyde Schiff-bases[J]. Eur. J. Med. Chem., 2010, 45(11): 5353-5361  doi: 10.1016/j.ejmech.2010.08.060

    32. [32]

      YAN J L, WU W N, WANG Y. Simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application[J]. Chinese J. Inorg. Chem., 2024, 40(9): 1653-1660

    33. [33]

      GUAN X F, ZHAO C Y, ZHANG Y X, WANG Y W, WANG Y Y, SHI X H, SHI Y, WANG W M. Crystal structure, fluorescence, magnetic properties and DNA binding of four novel binuclear Ln2 complexes with Schiff ligand[J]. J. Mol. Struct., 2023, 1282: 135207

    34. [34]

      XIN X Y, CHEN F J, LI W Y, WANG J, YANG C, LI M, SHI Y, WANG W M. Crystal structure, fluorescence properties, and biological activity of Ln2 complexes based on Schiff base ligand[J]. Chinese J. Inorg. Chem., 2023, 39(1): 1-12

    35. [35]

      MA X, SUN Y, SUN N, KANG Q, ZHANG J J, ZHU R T, GAO X L. A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity[J]. Chinese J. Inorg. Chem., 2024, 40(7): 1347-1356

    36. [36]

      JI J, GUO Z Y, LEI W N, ZHENG J W, QIN H R, YAN J H, HOU Y L, XIN X Y, WANG W M. Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity[J]. Chinese J. Inorg. Chem., 2025, 41(4): 761-772

    37. [37]

      XIN X Y, QIAO N, CAO C S, CHEN F J, LI W Y, LING Y N, WANG W M. Crystal structure, fluorescence properties and biological activity of three μ2-O bridged Ln2 (Ln=Sm, Eu and Tb) compounds[J]. Inorg. Chim. Acta, 2022, 541: 121092  doi: 10.1016/j.ica.2022.121092

    38. [38]

      LI H, JI L N, LI W S, XU Z H. Progress in electrochemical studies of deoxyribonucleic acid[J]. Chinese J. Inorg. Chem., 2003, 19(3): 225-232

    39. [39]

      HOU Y L, JI J, ZUO Y, LU S T, WANG X C, HU X M, HUANG X Q. Structure, magnetic property, bacteriostatic activity, and large magnetocaloric effect of a tetranuclear Gd(Ⅲ)-based cluster[J]. Chinese J. Inorg. Chem., 2022, 38(11): 2267-2274

  • 加载中
    1. [1]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    2. [2]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    3. [3]

      Peipei CUIYawen ZHENGPan LIPeiyan GUANZhaohong QIAN . Praseodymium-organic framework with 4, 4′-oxybis(benzoic acid): Rare broken layer structure, antibacterial activity, and sensing for Cd2+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1641-1649. doi: 10.11862/CJIC.20250152

    4. [4]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    5. [5]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    6. [6]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    7. [7]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    8. [8]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    9. [9]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    10. [10]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    11. [11]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    12. [12]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    13. [13]

      Yukun CHENKexin FENGBolun ZHANGWentao SONGJianjun ZHANG . Syntheses, crystal structures, and diametrically opposed mechanically-stimulated luminescence response of two Mg(Ⅱ) metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1227-1234. doi: 10.11862/CJIC.20240448

    14. [14]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    15. [15]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    16. [16]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    17. [17]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    18. [18]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    19. [19]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    20. [20]

      Hongren RONGGexiang GAOZhiwei LIUKe ZHOULixin SUHao HUANGWenlong LIUQi LIU . High-performance supercapacitor based on 1D cobalt-based coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1183-1195. doi: 10.11862/CJIC.20250034

Metrics
  • PDF Downloads(0)
  • Abstract views(118)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return