Citation: Wei GUO, Zhuoyi GUO, Xiaoxin LI, Wei ZHANG, Juanzhi YAN, Tingting GUO. Electrochemical sensor based on a Co(Ⅱ)-based metal-organic framework for the detection of Cd2+ and Pb2+[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(9): 1889-1902. doi: 10.11862/CJIC.20250097 shu

Electrochemical sensor based on a Co(Ⅱ)-based metal-organic framework for the detection of Cd2+ and Pb2+

  • Corresponding author: Tingting GUO, guotingting@tyu.edu.cn
  • Received Date: 22 March 2025
    Revised Date: 20 July 2025

Figures(11)

  • A cobalt-based metal-organic framework [Co3(L)2(1, 4-bib)4]·4H2O (Co-MOF) was prepared using 5-[(4-carboxyphenoxy)methyl]isophthalic acid (H3L) and 1, 4-bis(1H-imidazol-1-yl)benzene (1, 4-bib) as ligands. Then, an electrochemical sensor modified with Co-MOF on a glassy carbon electrode (Co-MOF@GCE) was constructed for detecting Cd2+ and Pb2+ in aqueous solutions. The sensor exhibited a linear range of 1.0-16.0 μmol·L-1 with a detection limit (LOD) of 4.609 nmol·L-1 for Cd2+, and 0.5-10.0 μmol·L-1 with an LOD of 1.307 nmol·L-1 for Pb2+. Simultaneous detection of both ions within 0.5-7.0 μmol·L-1 achieved LOD values of 0.47 nmol·L-1 (Cd2+) and 0.008 nmol·L-1 (Pb2+), respectively. Analysis of real water samples (tap water, mineral water, and river water) yielded recoveries of 95%-105%, validating practical applicability. Density functional theory (DFT) calculations reveal that synergistic interactions between cobalt centers and N/O atoms enhance adsorption and electron-transfer efficiency. CCDC: 2160744.
  • 加载中
    1. [1]

      SHEN Y Z, GAO X, LU H J, NIE C, WANG J L. Electrochemiluminescence-based innovative sensors for monitoring the residual levels of heavy metal ions in environment-related matrices[J]. Coord. Chem. Rev., 2023, 476: 214927  doi: 10.1016/j.ccr.2022.214927

    2. [2]

      MAO D P, DUAN P H, PIAO Y X. Acid phosphate-activated glassy carbon electrode for simultaneous detection of cadmium and lead[J]. J. Electroanal. Chem., 2022, 925(15): 116898

    3. [3]

      LIU Y Y, KE Y L, SHANG Q G, YANG X F, WANG D S, LIAO G Y. Fabrication of multifunctional biomass-based aerogel with 3D hierarchical porous structure from waste reed for the synergetic adsorption of dyes and heavy metal ions[J]. Chem. Eng. J., 2023, 451: 138934  doi: 10.1016/j.cej.2022.138934

    4. [4]

      WANG B J, ZHU Y, BAI Z S, LUQUE R, XUAN J. Functionalized chitosan biosorbents with ultra-high performance, mechanical strength and tunable selectivity for heavy metals in wastewater treatment[J]. Chem. Eng. J., 2017, 325: 350-359  doi: 10.1016/j.cej.2017.05.065

    5. [5]

      LI L B, BI X Y, ZHEN M Y, REN Y, ZHANG L, YOU T Y. Recent advances in analytical sensing detection of heavy metal ions based on covalent organic frameworks nanocomposites[J]. Trends Anal. Chem., 2024, 171: 117488  doi: 10.1016/j.trac.2023.117488

    6. [6]

      JIANG L, SUN H j, PENG T j, DING W j, LIU B, LIU Q. Comprehensive evaluation of environmental availability, pollution level and leaching heavy metals behavior in non-ferrous metal tailings[J]. J. Environ. Manage., 2021, 290(15): 112639

    7. [7]

      TANG K, CHEN Y T, ZHAO Y X. Exploiting halide perovskites for heavy metal ion detection[J]. Chem. Commun., 2024, 60(34): 4511-4520  doi: 10.1039/D4CC00619D

    8. [8]

      MA L R, WANG Z Z, LIU X, XU F, ABDIRYIM T. Molecules, high sensitivity and selectivity of PEDOT/carbon sphere composites for Pb2+ detection[J]. Molecules, 2025, 30(4): 798  doi: 10.3390/molecules30040798

    9. [9]

      ZHAO H R, SUN J C, KUMAR S, LI P H, THALLURI S M, WANG Z M, THUMU U. Recent advances in metal halide perovskite based photocatalysts for artificial photosynthesis and organic transformations[J]. Chem. Commun., 2024, 60(46): 5890-5911  doi: 10.1039/D4CC01949K

    10. [10]

      AZIMI S S, NARGES O S, ZEINAB D, ZAHRA H, ARVIN A, EHSAN S, MOEIN B. A comprehensive image of environmental toxic heavy metals in red meat: A global systematic review and meta-analysis and risk assessment study[J]. Sci. Total Environ., 2023, 889: 164100  doi: 10.1016/j.scitotenv.2023.164100

    11. [11]

      SCUTARAŞU C E, TRINCă C L. Heavy metals in foods and beverages: Global situation, health risks and reduction methods[J]. Foods, 2023, 12(18): 3340  doi: 10.3390/foods12183340

    12. [12]

      DEY P, KAUR M, KHAjURIA A, D KAUR, SINGH M, ALAjANGI H K, SINGLA N, SINGH G, BARNWAL R P. Heavy metal ion detection with nano-engineered materials: Scaling down for precision[J]. Microchem. J., 2024, 196: 109672  doi: 10.1016/j.microc.2023.109672

    13. [13]

      SHI Y K, DONG F J, GONZALEZ R A, WANG G X, YANG L F, CHEN S C, ZHENG H B, WANG S L. Simultaneous detection of heavy metal ions in food samples using a hypersensitive electrochemical sensor based on APTES-incubated MXene-NH2@CeFe-MOF-NH2[J]. Food Chem., 2025, 475(30): 143362

    14. [14]

      SHAO Z Y, DI K Z, DING L J, YOU F H, FAN C H, WANG K. Amino-enriched Zn-MOFs with self-reduction for energy-free simultaneous removal and electrochemical detection of heavy metal ions in the aquatic environment[J]. Anal. Chim. Acta, 2025, 1333(2): 343408

    15. [15]

      ZHANG L, PU Y S, XU W L, PENG J Y, LIU Y Q, DU H Z. A ratiometric electrochemical sensor for simultaneous detection of multiple heavy metal ions in water and herbal medicines based on methylene blue-functionalized metal-organic framework[J]. Microchem. J., 2024, 201: 110542  doi: 10.1016/j.microc.2024.110542

    16. [16]

      SELVARAj B, PRIYA G L, BALASUBRAMANIAN S. Harnessing the UiO-67 metal-organic framework for advanced detection of cadmium ions in water bodies[J]. RSC Adv., 2024, 14(48): 35618-35627  doi: 10.1039/D4RA06811D

    17. [17]

      LI W T, ZHANG X A, HU X T, SHI Y Q, LI Z H, HUANG X W, ZHANG W, ZHANG D, ZOU X B, SHI J Y. A smartphone-integrated ratiometric fluorescence sensor for visual detection of cadmium ions[J]. J. Hazard. Mater., 2020, 408(15): 124872

    18. [18]

      MA L, PEI Y W, YANG J, MA J F. A new thiacalix[4]arene-based metal-organic framework as an efficient electrochemical sensor for trace detection of Cd2+ and Pb2+[J]. Food Chem., 2024, 441(30): 138352

    19. [19]

      WANG F F, LIU C, YANG J, XU H L, PEI W Y, MA J F. A sulfur-containing capsule-based metal-organic electrochemical sensor for super-sensitive capture and detection of multiple heavy-metal ions[J]. Chem. Eng. J., 2022, 438(15): 135639

    20. [20]

      GUO X T, FENG S Y, PENG Y, LI B, ZHAO J W, XU H Y, MENG X R, ZHAI W W, PANG H. Emerging insights into the application of metal-organic framework (MOF)-based materials for electrochemical heavy metal ion detection[J]. Food Chem., 2025, 463(15): 141387

    21. [21]

      GUO T T, HUA B L, GUO Z Y, ZHANG M Q, WANG J R, AN Y Y, LI X N, YAN J Z. A copper(Ⅱ)-based metal-organic framework: Electrochemical sensing of Cd(Ⅱ) and Pb(Ⅱ) and adsorption of organic dyes[J]. Dalton Trans., 2025, 54(4): 1393-1401  doi: 10.1039/D4DT02374A

    22. [22]

      NIU X, PEI W Y, MA J C, YANG J, MA J F. Simultaneous electrochemical detection of gallic acid and uric acid with p-tert-butylcalix[4]arene-based coordination polymer/mesoporous carbon composite[J]. Microchim. Acta, 2022, 189: 93  doi: 10.1007/s00604-022-05201-z

    23. [23]

      JEONG J Y, DO J Y, HONG C A. Target DNA- and pH-responsive DNA hydrogel-based capillary assay for the optical detection of short SARS-CoV-2 cDNA[J]. Microchim. Acta, 2022, 189: 34  doi: 10.1007/s00604-021-05138-9

    24. [24]

      GUO T T, CAO X Y, AN Y Y, ZHANG X L, YAN J Z. Sulfur-bridged Co(Ⅱ)-thiacalix[4]arene metal-organic framework as an electrochemical sensor for the determination of toxic heavy metals[J]. Inorg. Chem., 2023, 62(11): 4485-4494  doi: 10.1021/acs.inorgchem.2c04197

    25. [25]

      SUN Y F, JIAN W, LI P H, YANG M, HUANG X J. Highly sensitive electrochemical detection of Pb(Ⅱ) based on excellent adsorption and surface Ni(Ⅱ)/Ni(Ⅲ) cycle of porous flower-like NiO/rGO nanocomposite[J]. Sens. Actuator B‒Chem., 2019, 292: 136-147  doi: 10.1016/j.snb.2019.04.131

    26. [26]

      MO Y T, SHEN Y. Electrochemical detection of heavy metals in rice, milk and tap water using free-standing carbon felt electrodes[J]. Food Chem., 2024, 460: 140450  doi: 10.1016/j.foodchem.2024.140450

    27. [27]

      CHEN Y Y, LIU Y Y, ZHAO P, LIANG Y, MA Y, LIU H, HOU J Z, HOU C, HUO D Q. Electrochemical detection of heavy metals in rice, milk and tap water using free-standing carbon felt electrodes[J]. Food Chem., 2024, 446(15): 138770

    28. [28]

      KITTE S A, LI S P, NSABIMANA A, GAO W Y, LAI J P, LIU Z Y, XU G B. Stainless steel electrode for simultaneous stripping analysis of Cd(Ⅱ), Pb(Ⅱ), Cu(Ⅱ) and Hg(Ⅱ)[J]. Talanta, 2019, 191, 485-490  doi: 10.1016/j.talanta.2018.08.066

    29. [29]

      HUANG H K, WANG J H, ZHENG Y Q, BAI W D, MA Y, ZHAO X J. Synthesis and application of bismuth nanoparticle-loaded longan porous carbon for simultaneous electrochemical determination of Pb(Ⅱ) and Cd(Ⅱ) in seafoods[J]. Food chem., 2024, 452(15): 139572

    30. [30]

      ONG S C, NG H Q, AHMAD L A, LOW S C. Enhancement of electrode surface hydrophilicity and selectivity with Nafion-PSS composite for trace heavy metal sensing in electrochemical sensors[J]. Anal. Chim. Acta, 2025, 1335(15): 343423

    31. [31]

      DOAN D T, PHAM Y H T, LUONG D D, THI N H, OANH H T, LE T T, NGUYEN H T, HOANG T K D, HOANG M H. A highly sensitive electrochemical sensor for the detection of lead(Ⅱ) ions utilizing rice-shaped bimetallic MOFs incorporated reduced graphene oxide[J]. RSC Adv., 2025, 15(7): 5356-5368  doi: 10.1039/D4RA08952A

    32. [32]

      YANG H L, PENG C W, HAN J J, SONG Y H, WANG L. Three- dimensional macroporous carbon/Zr-2, 5-dimercaptoterephthalic acid metal-organic frameworks nanocomposites for removal and detection of Hg(Ⅱ)[J]. Sens. Actuator B‒Chem., 2020, 320: 128447  doi: 10.1016/j.snb.2020.128447

    33. [33]

      HU Z, DEIBERT B J, LI J. Luminescent metal-organic frameworks for chemical sensing and explosive detection[J]. Chem. Soc. Rev., 2014, 43(16): 5815-5840  doi: 10.1039/C4CS00010B

    34. [34]

      WANG Y, WANG L, HUANG W, ZHANG T, HU X, PERMAN J A, MA S Q. A metal-organic framework and conducting polymer based electrochemical sensor for high performance cadmium ion detection[J]. J. Mater. Chem. A, 2017, 5(18): 8385-8393  doi: 10.1039/C7TA01066D

    35. [35]

      WANG X X, QI Y X, SHEN Y, YUAN Y, ZHANG L D, ZHANG C Y, SUN Y H. A ratiometric electrochemical sensor for simultaneous detection of multiple heavy metal ions based on ferrocene-functionalized metal-organic framework[J]. Sens. Actuator B‒Chem., 2020, 310: 127756  doi: 10.1016/j.snb.2020.127756

    36. [36]

      LI X T, NIU X, YANG J, PEI W Y, MA J F. Thiacalix[4]arene-based complex with Co(Ⅱ) ions as electrode modifier for simultaneous electrochemical determination of Cd(Ⅱ), Pb(Ⅱ), and Cu(Ⅱ)[J]. Microchim. Acta, 2022, 189: 344  doi: 10.1007/s00604-022-05456-6

    37. [37]

      PAN Y C, HU X Y, GUO D S. Biomedical applications of calixarenes: State of the art and perspectives[J]. Angew. Chem. ‒Int. Edit., 2021, 60(6): 2768-2794  doi: 10.1002/anie.201916380

    38. [38]

      AN Y Y, GUO T T, BIAN J H, YAN J Z. A 3D compound based on semi-rigid tricarboxylato-bridged Co(Ⅱ): Synthesis, crystal structure and magnetism[J]. J. Chem. Crystallogr., 2023, 53: 540-546  doi: 10.1007/s10870-023-00993-1

    39. [39]

      SHELDRICK G M. SHELXS-2018, Programs for X-ray crystal structure solution[CP]. University of Göttingen, Germany, 2018.

    40. [40]

      FARRUGIA L J. WINGX: A Windows program for crystal structure analysis[CP]. University of Glasgow, UK, 1988.

    41. [41]

      SHELDRICK G M. SHELXTL-2018, Programs for X-ray crystal structure refinement[CP]. University of Göttingen, Germany, 2018.

    42. [42]

      WANG L, WANG X Y, SHI G S, PENG C, DING Y H. Thiacalixarene covalently functionalized multiwalled carbon nanotubes as chemically modified electrode material for detection of ultratrace Pb2+ ions[J]. Anal. Chem., 2012, 84(24): 10560-10567  doi: 10.1021/ac302747f

    43. [43]

      SUTTON C C, FRANKS G V, DA SILVA G. Modeling the antisymmetric and symmetric stretching vibrational modes of aqueous carboxylate anions[J]. Spectroc. Acta Pt. A‒Molec. Biomolec. Spectr., 2015, 134(5): 535-542

    44. [44]

      SHUKLA S N, GAUR P, BAGRI S S, MEHROTRA R, CHAURASIA B, RAIDAS M L. Pd(Ⅱ) complexes with ONN pincer ligand: Tailored synthesis, characterization, DFT, and catalytic activity toward the Suzuki-Miyaura reaction[J]. J. Mol. Struct., 2021, 1225(5): 129071

    45. [45]

      SRIRAM B, BABY J N, HSU Y F, WANG S F, GEORGE M. Toward the development of disposable electrodes based on holmium orthovanadate/f-boron nitride: Impacts and electrochemical performances of emerging inorganic contaminants. [J]. Inorg. Chem., 2021, 60(16): 12425-12435  doi: 10.1021/acs.inorgchem.1c01678

    46. [46]

      YE C, XU F, ULLAH F, WANG M Q. CdS/Ti3C2 heterostructure-based photoelectrochemical platform for sensitive and selective detection of trace amount of Cu2+[J]. Anal. Bioanal. Chem., 2022, 414(12): 3571-3580  doi: 10.1007/s00216-021-03870-y

    47. [47]

      NGOENSAWAT U, PISUCHPEN T, SRITANA-ANANT Y, RODTHONGKUM N, HOVEN V P. Conductive electrospun composite fibers based on solid-state polymerized poly(3, 4-ethylenedioxythiophene) for simultaneous electrochemical detection of metal ions[J]. Talanta, 2022, 241: 123253  doi: 10.1016/j.talanta.2022.123253

    48. [48]

      REHMAN A U, FAYAZ M, LV H, LIU Y, ZHANG J, WANG Y, DU L J, WANG R H, SHI K Y. Controllable synthesis of a porous PEI-functionalized Co3O4/rGO nanocomposite as an electrochemical sensor for simultaneous as well as individual detection of heavy metal ions[J]. ACS Omega, 2023, 8(26): 24125-24126  doi: 10.1021/acsomega.3c02938

    49. [49]

      SEGALL M D, SHAH R, PICKARD C J, PAYNE M C. Population analysis of plane-wave electronic structure calculations of bulk materials[J]. Phys. Rev. B: Condens. Matter, 1996, 54(23): 16317-16320  doi: 10.1103/PhysRevB.54.16317

    50. [50]

      BRIONES-JURADO C, AGACINO-VALDÉS E. On the possible removal of nitrogen monoxide and carbon monoxide on copper ion-exchanged montmorillonite: A DFT study[J]. Int. J. Quantum Chem., 2008, 108(10): 1802-1809  doi: 10.1002/qua.21640

  • 加载中
    1. [1]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    2. [2]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

    3. [3]

      Xinyu WuJianfeng LuZihao ZhuSuijun LiuHerui Wen . Recent advances of metal-organic frameworks and MOF-derived materials based on p-block metal for the electrochemical reduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(7): 110151-. doi: 10.1016/j.cclet.2024.110151

    4. [4]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    5. [5]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    6. [6]

      Genlin SunYachun LuoZhihong YanHongdeng QiuWeiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787

    7. [7]

      Guoying Han Qazi Mohammad Junaid Xiao Feng . Topology-driven directed synthesis of metal-organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100447-100447. doi: 10.1016/j.cjsc.2024.100447

    8. [8]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    9. [9]

      Yijian ZhaoJvzhe LiYunyi ShiJie HuMeiyi LiuYao ShenXinglin HouQiuyue WangQi WangZhiyi Yao . A label-free and ratiometric fluorescent sensor based on porphyrin-metal-organic frameworks for sensitive detection of ochratoxin A in cereal. Chinese Chemical Letters, 2025, 36(4): 110132-. doi: 10.1016/j.cclet.2024.110132

    10. [10]

      Cheng-Shuang WangBing-Yu ZhouYi-Feng WangCheng YuanBo-Han KouWei-Wei ZhaoJing-Juan Xu . Bifunctional iron-porphyrin metal-organic frameworks for organic photoelectrochemical transistor gating and biosensing. Chinese Chemical Letters, 2025, 36(3): 110080-. doi: 10.1016/j.cclet.2024.110080

    11. [11]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    12. [12]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    13. [13]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    14. [14]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    15. [15]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    16. [16]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    17. [17]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    18. [18]

      Xue-Zhi WangYi-Tong LiuChuang-Wei ZhouBei WangDong LuoMo XieMeng-Ying SunYong-Liang HuangJie LuoYan WuShuixing ZhangXiao-Ping ZhouDan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380

    19. [19]

      Cheng ChengNasir AliJi LiuJuan QiaoMing WangLi Qi . Construction of degradable liposome-templated microporous metal-organic frameworks with commodious space for enzymes. Chinese Chemical Letters, 2024, 35(11): 109812-. doi: 10.1016/j.cclet.2024.109812

    20. [20]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

Metrics
  • PDF Downloads(1)
  • Abstract views(126)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return