Citation: Qingtao CHEN, Xiangdong SHI, Xianghai RAO, Liying JIANG, Chunxiao JIA, Fenghua CHEN. Catalytic and in situ surface-enhanced Raman scattering detection properties of graphene oxide/gold nanorod assembly[J]. Chinese Journal of Inorganic Chemistry, ;2026, 42(1): 120-128. doi: 10.11862/CJIC.20250091 shu

Catalytic and in situ surface-enhanced Raman scattering detection properties of graphene oxide/gold nanorod assembly

  • Corresponding author: Fenghua CHEN, phenix@zzuli.edu.cn
  • Received Date: 18 March 2025
    Revised Date: 13 November 2025

Figures(7)

  • Graphene oxide (GO)/gold nanorod (AuNR) composite (GO/AuNR)n assemblies with different numbers of assembly layers were constructed on amino-modified silicon wafers using an electrostatic adsorption layer-by-layer assembly technique. The performance of these composite assemblies in the catalytic reduction of 4-nitrophenol (4-NP) and the photocatalytic degradation of rhodamine B (RhB) was systematically investigated. Furthermore, their application as surface-enhanced Raman scattering (SERS) substrates for detecting various pollutants (such as 4-NP, RhB, pyridine, and 4-aminothiophenol) and for real-time in situ monitoring of the aforementioned catalytic reaction processes was evaluated. The results indicated that the (GO/AuNR)n composite assemblies exhibited superior catalytic activity and SERS enhancement performance compared to AuNR alone. Moreover, both the catalytic and SERS performances were significantly enhanced with an increasing number of assembly layers.
  • 加载中
    1. [1]

      ZHAO J G, LI C T, DU X Y, ZHU Y C, LI S H, LIU X, LIANG C X, HUANG L, YANG K. Recent progress of carbon dots for air pollutants detection and photocatalytic removal: Synthesis, modifications, and applications[J]. Small, 2022, 18(51): 2200744  doi: 10.1002/smll.202200744

    2. [2]

      KUMAR P, KIM K H, LEE J, SHANG J, KHAZI M I, KUMAR N, LISAK G. Metal-organic framework for sorptive/catalytic removal and sensing applications against nitroaromatic compounds[J]. J. Ind. Eng. Chem., 2020, 84: 87-95  doi: 10.1016/j.jiec.2019.12.024

    3. [3]

      YANG L K, LI Z J, WANG X, LI L L, CHEN Z. Facile electrospinning synthesis of S-scheme heterojunction CoTiO3/g-C3N4 nanofiber with enhanced visible light photocatalytic activity[J]. Chin. J. Catal., 2024, 59: 237-249  doi: 10.1016/S1872-2067(23)64566-8

    4. [4]

      WANG Q W, DONG Y L, ZHU J Y, HAN J L, LI Z X, XU D Y, FISCHER L, ULBRICHT M, REN Z J, WANG P F. Critical review on emerging photocatalytic membranes for pollutant removal: From preparation to application[J]. Talanta, 2025, 287: 127561  doi: 10.1016/j.talanta.2025.127561

    5. [5]

      ZHENG X L, YE Z W, AKMAL Z, HE C, ZHANG J L, WANG L Z. Recent progress in SERS monitoring of photocatalytic reactions[J]. Chem. Soc. Rev., 2024, 53(2): 656-683  doi: 10.1039/D3CS00462G

    6. [6]

      XU Y, ZHONG H Q, SHI M, ZHENG Z D, LIU S J, SHOU Q, LI H, YANG G J, LI Z B, XING X B. Microfiber-directed reversible assembly of Au nanoparticles for SERS detection of pollutants[J]. Opt. Lett., 2022, 47(8): 2028-2031  doi: 10.1364/OL.454581

    7. [7]

      YU J J, YANG Y W, SUN F F, CHEN J F. Research status and prospect of nano silver (Ag)-modified photocatalytic materials for degradation of organic pollutants[J]. Environ. Sci. Pollut., 2023, 31: 191-214  doi: 10.1007/s11356-023-31166-4

    8. [8]

      PECORARO C M, SOPHA H, WU S M, KIM H, WANG Y, MACAK J, SANTAMARIA M, SCHMUKI P. Platinum single atoms on titania aid dye photodegradation whereas platinum nanoparticles do not[J]. Nanoscale, 2025, 17: 3949-3957  doi: 10.1039/D4NR02450H

    9. [9]

      ZHOU X M, LI M H, HOU J F, SUN J Y, ZHENG S R, CHEN Y J, GUAN Q X. Degradation of bisphenol F by peroxymonosulfate activated with palladium-based catalysts[J]. J. Environ. Sci., 2025, 150: 54-65  doi: 10.1016/j.jes.2024.02.034

    10. [10]

      CAI J Y, LIU R H, JIA S Y, FENG Z H, LIN L, ZHENG Z Q, WU S F, WANG Z Z. SERS hotspots distribution of the highly ordered noble metal arrays on flexible substrates[J]. Opt. Mater., 2021, 122: 111779  doi: 10.1016/j.optmat.2021.111779

    11. [11]

      WANG Z, ZHANG J S, YANG S Y, ZHOU L Y, LI Y D, LAN Y P. Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition[J]. Chinese J. Inorg. Chem., 2024, 40(9): 1708-1718  doi: 10.11862/CJIC.20240067

    12. [12]

      CAO Y, CHENG Y Q, SUN M T. Graphene-based SERS for sensor and catalysis[J]. Appl. Spectrosc. Rev., 2023, 8(1): 1-38

    13. [13]

      KANG L L, CHU J Y, ZHAO H T, XU P, SUN M T. Recent progress in the applications of graphene in surface-enhanced Raman scattering and plasmon-induced catalytic reactions[J]. J. Mater. Chem. C, 2015, 3(35): 9024-9037  doi: 10.1039/C5TC01759A

    14. [14]

      YAO A H, FU Q G, XU L, XU Y, JIANG W Q, WANG D P. Synthesis of pH-responsive nanocomposites of gold nanoparticles and graphene oxide and their applications in SERS and catalysis[J]. RSC Adv., 2017, 7(89): 56519-56527  doi: 10.1039/C7RA11928C

    15. [15]

      XU L, YAO A H, XU Y, WANG D P. Two-step electrodeposition process for fabrication of Au-graphene oxide hybrid films as SERS substrates[J]. Chinese J. Inorg. Chem., 2016, 32(12): 2183-2190

    16. [16]

      SONG Y S, PENG Y S, LONG N V, HUANG Z R, YANG Y. Multifunctional self-assembly 3D Ag/g-C3N4/RGO aerogel as highly efficient adsorbent and photocatalyst for R6G removal from wastewater[J]. Appl. Surf. Sci., 2021, 542: 148584  doi: 10.1016/j.apsusc.2020.148584

    17. [17]

      HE J F, SONG G, WANG X Y, ZHOU L, LI J M. Multifunctional magnetic Fe3O4/GO/Ag composite microspheres for SERS detection and catalytic degradation of methylene blue and ciprofloxacin[J]. J. Alloy. Compd., 2022, 893: 162226  doi: 10.1016/j.jallcom.2021.162226

    18. [18]

      XING C C, ZHONG S C, LIU D L, ZHANG T, CAO A, ZENG P, MEN D D, LI C C, CAI W P, LI Y. Hydrogel film@Au nanoparticle arrays based on self-assembly co-assisted by electrostatic attraction and hydrogel-shrinkage for SERS detection with active gaps[J]. Adv. Mater. Interfaces, 2021, 8(18): 2101055  doi: 10.1002/admi.202101055

    19. [19]

      YI Z, YE X, LUO J S, KANG X L, YI Y G, YI Y, HUANG J, JIANG X D, TANG Y J. Ordered hexagonal nanoplasmonic Au nanoparticle arrays: AAO-assisted thermal treatment synthesis and application as surface-enhanced Raman scattering substrates[J]. Plasmonics, 2017, 12(6): 2013-2020  doi: 10.1007/s11468-016-0475-z

    20. [20]

      GAO J M, HUANG L, ZHANG Z M, LI G K. Synthesis of sea urchin-shaped Au nanocrystals by double-strand diblock oligonucleotides for surface-enhanced Raman scattering and catalytic application[J]. Nanotechnology, 2021, 32(17): 75501

    21. [21]

      MILLIKEN S, FRASER J, POIRIER S, HULSE J, TAY L L. Self-assembled vertically aligned Au nanorod arrays for surface-enhanced Raman scattering (SERS) detection of cannabinol[J]. Spectroc. Acta Pt. A‒Molec. Biomolec. Spectr., 2018, 196: 222-228  doi: 10.1016/j.saa.2018.01.030

    22. [22]

      CHEN F H, YANG M S, SHI X D, QIN X Y, CHEN Q T, JIA C X, JIANG L Y, LUO D. 3D graphene supported p-n heterojunction of Ag3PO4/BiPO4 nanorods for enhanced simulated sunlight irradiated photocatalytic activity[J]. Res. Chem. Intermed., 2022, 48(8): 3289-3313  doi: 10.1007/s11164-022-04753-2

    23. [23]

      LI J, WANG J H, YANG A L, SHI Z N, WANG J W, ZHAO Q F, ZHANG Y. Preparation and photothermal catalytic properties of gold nanospheres and nanorods[J]. Chinese J. Inorg. Chem., 2016, 32(12): 2183-2190

    24. [24]

      PENG B, LI G, LI D, DODSON S, ZHANG Q, ZHANG J, LEE Y H, DEMIR H V, LING X Y, XIONG Q. Vertically aligned gold nanorod monolayer on arbitrary substrates: Self-assembly and femtomolar detection of food contaminants[J]. ACS Nano, 2013, 7: 5993-6000  doi: 10.1021/nn401685p

    25. [25]

      YANG Y D, LIU G Z, XU J H, YANG L M, LI D Z. Preparation, modification, self-assembly and surface enhanced Raman scattering of gold nanorods and its biomedical application[J]. Sci. Sin. Chim., 2015, 45(6): 581-596

    26. [26]

      LEE A, ANDRADE G F S, AHMED A, SOUZA M L, COOMBS N, TUMARKIN E, LIU K, GORDON R, BROLO A G, KUMACHEVA E. Probing dynamic generation of hot-spots in self-assembled chains of gold nanorods by surface-enhanced Raman scattering[J]. J. Am. Chem. Soc., 2011, 133: 7563-7570  doi: 10.1021/ja2015179

  • 加载中
    1. [1]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    4. [4]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    5. [5]

      Ruifeng CHENChao XUJianting JIANGTianshe YANG . Gold nanorod/zinc oxide/mesoporous silica nanoplatform: A triple-modal platform for synergistic anticancer therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2272-2282. doi: 10.11862/CJIC.20250117

    6. [6]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    7. [7]

      Hongpeng HeMengmeng ZhangMengjiao HaoWei DuHaibing Xia . Synthesis of Different Aspect-Ratios of Fixed Width Gold Nanorods. Acta Physico-Chimica Sinica, 2024, 40(5): 2304043-0. doi: 10.3866/PKU.WHXB202304043

    8. [8]

      Yongxin LIUXingchen LIHongjia LIUDanni LITao ZHANGXi CHEN . Enhancement effect of Fe3O4 conversion to MIL-100(Fe) on activation of persulfate for degradation of antibiotic. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2503-2513. doi: 10.11862/CJIC.20250169

    9. [9]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    10. [10]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    11. [11]

      Wenjuan SHIYuke LUXiuyuan LILei HOUYaoyu WANG . Mg(Ⅱ) metal-organic frameworks based on biphenyltetracarboxylic acid: Synthesis and CO2 adsorption and catalytic conversion performance. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2455-2463. doi: 10.11862/CJIC.20250220

    12. [12]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    13. [13]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    14. [14]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    15. [15]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    16. [16]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    17. [17]

      Kezhen QiBei ChengKaiqiang Xu . Ultrafast interfacial charge transfer promoted by the LSPR of Au nanoparticles for photocatalytic H2 evolution. Acta Physico-Chimica Sinica, 2026, 42(3): 100205-0. doi: 10.1016/j.actphy.2025.100205

    18. [18]

      Dingwen CHENSiheng YANGHaiyan FUHua CHENXueli ZHENGWeichao XUEJiaqi XURuixiang LI . NiOOH-mediated synthesis of gold nanoaggregates for electrocatalytic performance for selective oxidation of glycerol to glycolate. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2317-2326. doi: 10.11862/CJIC.20250053

    19. [19]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    20. [20]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

Metrics
  • PDF Downloads(0)
  • Abstract views(77)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return