Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials
- Corresponding author: Weihui ZHONG, weihuizhong@zjut.edu.cn Jingli XIE, jlxie@mail.zjxu.edu.cn
Citation:
Mengyang LI, Hao XU, Zhonghao NIU, Chunhua GONG, Weihui ZHONG, Jingli XIE. Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(7): 1294-1300.
doi:
10.11862/CJIC.20250080
YIN X J, GONG W Z, ZENG Y J, QIU H L, LIU L, HOLLMANN F, CHEN B H. Substrate-specific evolution of amine dehydrogenases for accessing structurally diverse enantiopure (R)-β-amino alcohols[J]. ACS Catal., 2024, 14(2): 837-845
doi: 10.1021/acscatal.3c04995
HU H, WANG Z B. Cr-catalyzed asymmetric cross aza-pinacol couplings for β-amino alcohol synthesis[J]. J. Am. Chem. Soc., 2023, 145(38): 20775-20781
doi: 10.1021/jacs.3c08493
LIU S Z, WANG S C, WANG P J, HUANG Z L, WANG T, LEI A W. 1, 2-Amino oxygenation of alkenes with hydrogen evolution reaction[J]. Nat. Commun., 2022, 13: 4430
doi: 10.1038/s41467-022-32084-8
COREY E J, ZHANG F Y. re- and si-face-selective nitroaldol reactions catalyzed by a rigid chiral quaternary ammonium salt: A highly stereoselective synthesis of the HIV protease inhibitor amprenavir (Vertex 478)[J]. Angew. Chem.‒Int. Edit., 1999, 38: 1931-1934
doi: 10.1002/(SICI)1521-3773(19990712)38:13/14<1931::AID-ANIE1931>3.0.CO;2-4
O′BRIEN P. Sharpless asymmetric aminohydroxylation: Scope, limitations, and use in synthesis[J]. Angew. Chem.‒Int. Edit., 1999, 38: 326-329
doi: 10.1002/(SICI)1521-3773(19990201)38:3<326::AID-ANIE326>3.0.CO;2-T
AGER D J, PRAKASH I, SCHAAD D R. 1, 2-Amino alcohols and their heterocyclic derivatives as chiral auxiliaries in asymmetric synthesis[J]. Chem. Rev., 1996, 96(2): 835-876
doi: 10.1021/cr9500038
HERAV M M, LASHAKI T B, FATTAHI B, ZADSIRJAN V. Application of asymmetric sharpless aminohydroxylation in total synthesis of natural products and some synthetic complex bio-active molecules[J]. RSC Adv., 2018, 8: 6635
ZHOU Z J, TAN, Y Q, SHEN X, SERGEI I, ERIC M. Catalytic enantioselective synthesis of β-amino alcohols by nitrene insertion[J]. Sci. China: Chem., 2021, 64(3): 452-458
doi: 10.1007/s11426-020-9906-x
NAKAFUKU K M; ZHANG Z X, WAPPES E A, STATEMAN L M, CHEN AN D, NAGIB D A. Enantioselective radical C-H amination for the synthesis of β-amino alcohols[J]. Nat. Chem., 2020, 12(8): 697-704
doi: 10.1038/s41557-020-0482-8
REDDY U V S, CHENNAPURAM M, SEKI C, KWON E, OKUYAMA Y, NAKANO H. Catalytic efficiency of primary β-amino alcohols and their derivatives in organocatalysis[J]. Eur. J. Org. Chem., 2016, 2016: 4124-4143
doi: 10.1002/ejoc.201600164
SHI C Y, REN C, ZHANG E, JIN H L, YU X C, WANG S. Synthesis of β-amino alcohols using the tandem reduction and ring-opening reaction of nitroarenes and epoxides[J]. Tetrahedron, 2016, 72(27/28): 3839-3843
ZHANG J Q, GAO H, GAO L L, CHEN M Y, HUANG S P, ZHANG J D. Biocatalytic asymmetric ring-opening of meso-epoxides to enantiopure cyclic trans-β-amino alcohols involving a key amine transaminase[J]. Green Chem., 2024, 26: 6160
doi: 10.1039/D4GC00827H
REISER O. The sharpless asymmetric aminohydroxylation of olefins[J]. Angew. Chem.‒Int. Edit., 1996, 35: 1308-1309
doi: 10.1002/anie.199613081
AZIZI N, SAIDI M R. Highly chemoselective addition of amines to epoxides in water[J]. Org. Lett., 2005, 7: 3649-3651
doi: 10.1021/ol051220q
AZOULAY S, MANABE K, KOBAYASHI S. Catalytic asymmetric ring opening of meso-epoxides with aromatic amines in water[J]. Org. Lett., 2005, 7: 4593-4595
doi: 10.1021/ol051546z
LIU B X, XIE P F, ZHAO J, WANG J J, WANG M M, JIANG Y Q, CHANG J B, LI X W. Rhodium-catalyzed enantioselective synthesis of β-amino alcohols via desymmetrization of gem-dimethyl groups[J]. Angew. Chem.‒Int. Edit., 2021, 60: 8396-8400
doi: 10.1002/anie.202014080
CHARLES L K, BRUCE R. Base-induced rearrangement of epoxides. Ⅳ. reaction of cyclohexene oxide with various lithium alkylamides[J]. J. Org. Chem., 1972, 37(13): 2060-2063
doi: 10.1021/jo00978a002
SEKAR B S, MAO J, LUKITO B R, WANG Z, LI Z. Bioproduction of enantiopure (R)- and (S)-2-phenylglycinols from styrenes and renewable feedstocks[J]. Adv. Synth. Catal., 2021, 363: 1892-1903
doi: 10.1002/adsc.202001322
ZHANG J D, YANG X X, DONG R, GAO L L, LI J, LI X, HUANG S P, ZHANG C F, CHANG H H. Cascade biocatalysis for regio- and stereoselective aminohydroxylation of styrenyl olefins to enantiopure arylglycinols[J]. ACS Sustain. Chem. Eng., 2020, 8: 18277-18285
doi: 10.1021/acssuschemeng.0c06819
THIERRY O, GUILLAUME L C. An efficient method for the ring opening of epoxides with aromatic amines catalyzed by bismuth trichloride[J]. Tetrahedron Lett., 2002, 43(44): 781-7893
GOVINDARAJAN S, KARI V, BABU V. Synthesis of β-amino alcohols by regioselective ring opening of arylepoxides with anilines catalyzed by cobaltous chloride[J]. Tetrahedron Lett., 2004, 45(44): 8353-8256
CURINI M, EPIFANO F, MARCOTULLIO M, ROSATI O. Zirconium sulfophenyl phosphonate as a heterogeneous catalyst in the preparation of β-amino alcohols from epoxides[J]. Eur. J. Org. Chem., 2001, 21: 4149-4152
HERAVI M M, BAGHERNEJAD B, OSKOOIE H A. A new strategy for the aminolysis of epoxides with amines under solvent free conditions using Fe-MCM-41 as a novel and efficient catalyst[J]. Catal. Lett., 2009, 130: 547-550
doi: 10.1007/s10562-009-9898-x
XUE W M, KUNG M C, KOZLOV A I, POPP K E, KUNG H H. Catalytic aminolysis of epoxide by alumina prepared from amine-protected Al precursor[J]. Catal. Today, 2003, 85(2): 219-224
CHAKRABORTI A K, KONDASKAR A, RUDRAWAR S. Scope and limitations of montmorillonite K 10 catalysed opening of epoxide rings by amines[J]. Tetrahedron, 2004, 60(41): 9085-9091
doi: 10.1016/j.tet.2004.07.077
KURESHY R I, SINGH S, KHAN N H, ABDI S H R, SURESH E, JASRA R V. Efficient method for ring opening of epoxides with amines by NaY zeolite under solvent-free conditions[J]. J. Mol. Catal. A‒Chem., 2007, 264(1): 162-169
LI B N, CHEN MX, HU Q Y, ZHU J Y, YANG X, LI Z X, HU C L, LI Y Y, NI P, DING Y. Facilely tunable dodecahedral polyoxometalate framework loaded with mono- or bimetallic sites for efficient photocatalytic CO2 reduction[J]. Appl. Catal. B‒Environ., 2024, 346: 123733
doi: 10.1016/j.apcatb.2024.123733
FU S H, KHAN S U, YANG R R, PANG H J, AU C M, MA H Y, WANG X M, YANG G X, SUN W L, YU W Y. High-performance heterometallic photocatalysts afforded by polyoxometalate synthons for efficient H2 production[J]. J. Colloid Interface Sci., 2024, 666: 496-504
doi: 10.1016/j.jcis.2024.04.057
FENG Y, FU F, ZENG L, ZHAO M, XIN X, LIANG J, ZHOU M, FANG X, LV H, YANG G Y. Atomically precise silver clusters stabilized by lacunary polyoxometalates with photocatalytic CO2 reduction activity[J]. Angew. Chem.‒Int. Edit., 2024, 63: e202317341
doi: 10.1002/anie.202317341
LIANG Y, ZHANG Z, SU X, FENG X, XING S, LIU W, HUANG R, LIU Y. Coordination defect-induced frustrated Lewis pairs in polyoxo-metalate-based metal-organic frameworks for efficient catalytic hydrogenation[J]. Angew. Chem.‒Int. Edit., 2023, 62: e202309030
doi: 10.1002/anie.202309030
MATEOS P S, RUSCITTI C B, CASELLA M L, MATKOVIC S R, BRIAND L E. Phosphotungstic wells-dawson heteropolyacid as potential catalyst in the transesterification of waste cooking oil[J]. Catalysts, 2023, 13: 1253
doi: 10.3390/catal13091253
SI C, LIU X L, ZHANG T, XU J B, LI J, FU J Y, HAN Q X. Constructing a photocatalyst for selective oxidation of benzyl alcohol to benzaldehyde by photo-Fenton-like catalysis[J]. Inorg. Chem., 2023, 62(10): 4210-4219
doi: 10.1021/acs.inorgchem.2c04318
XU B J, XU Q, WANG Q Z, LIU Z, ZHAO R K, LI D P, MA P T, WANG J P, NIU J Y. A copper-containing polyoxometalate-based metal-organic framework as an efficient catalyst for selective catalytic oxidation of alkylbenzenes[J]. Inorg. Chem., 2021, 60(7): 4792-4799
doi: 10.1021/acs.inorgchem.0c03741
ZHANG Q Y, YANG T Y, LIU X F, YUE C Y, AO L F, DENG T L, ZHANG Y T. Heteropoly acid-encapsulated metal-organic framework as a stable and highly efficient nanocatalyst for esterification reaction[J]. RSC Adv., 2019, 9: 16357-16365
doi: 10.1039/C9RA03209F
LIU Y, LIU Q Y, SUN K H, ZHAO S F, KIM Y D, YANG Y P, LIU Z Y, PENG Z K. Identification of the encapsulation effect of heteropolyacid in the Si-Al framework toward benzene alkylation[J]. ACS Catal., 2022, 12(8): 4765-4776
doi: 10.1021/acscatal.1c05895
AZIZI N, SAIDI M R. Highly efficient ring opening reactions of epoxides with deactivated aromatic amines catalyzed by heteropoly acids in water[J]. Tetrahedron Lett., 2007, 63(4): 888-891
doi: 10.1016/j.tet.2006.11.045
LIU H R, XU H, ZHU D R, ZHANG J Y, GONG C H, XIE J L. Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials[J]. Chinese J. Inorg. Chem., 2024, 40(7): 1368-1376
doi: 10.11862/CJIC.20240066
PARKER R E, ISAACS N S. Mechanisms of epoxide reactions[J]. Chem. Rev., 1959, 59(4): 727-799
SAIKIA L, SATYARTHI J K, SRINIVAS D, RATNASAMY P. Activation and reactivity of epoxides on solid acid catalysts[J]. J. Catal., 2007, 252(2): 148-160
doi: 10.1016/j.jcat.2007.10.002
Huirong LIU , Hao XU , Dunru ZHU , Junyong ZHANG , Chunhua GONG , Jingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066
Xiaonan LI , Hui HAN , Yihan ZHANG , Jing XIONG , Tingting GUO , Juanzhi YAN . A viologen‐based Cd(Ⅱ) coordination polymer: Self‐assembly, thermochromism, and electrochemical property. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1439-1444. doi: 10.11862/CJIC.20240376
Runjie Li , Hang Liu , Xisheng Wang , Wanqun Zhang , Wanqun Hu , Kaiping Yang , Qiang Zhou , Si Liu , Pingping Zhu , Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
Ruiying WANG , Hui WANG , Fenglan CHAI , Zhinan ZUO , Benlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052
Xingyuan Lu , Yutao Yao , Junjing Gu , Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
Hong CAI , Jiewen WU , Jingyun LI , Lixian CHEN , Siqi XIAO , Dan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
Liang TANG , Jingfei NI , Kang XIAO , Xiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139
Zhaoxuan ZHU , Lixin WANG , Xiaoning TANG , Long LI , Yan SHI , Jiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368
Yifeng TAN , Ping CAO , Kai MA , Jingtong LI , Yuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147
Yuanyuan Ping , Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092
Pengcheng Yan , Peng Wang , Jing Huang , Zhao Mo , Li Xu , Yun Chen , Yu Zhang , Zhichong Qi , Hui Xu , Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047
Ran Yu , Chen Hu , Ruili Guo , Ruonan Liu , Lixing Xia , Cenyu Yang , Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032
Lirui Shen , Kun Liu , Ying Yang , Dongwan Li , Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
Linjie ZHU , Xufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416
Shitao Fu , Jianming Zhang , Cancan Cao , Zhihui Wang , Chaoran Qin , Jian Zhang , Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026
Symmetry codes: ⅰ 1-x, -y, 1-z; ⅱ-x, -y, -z; ⅲ -x, 2-y, 1-z; ⅳ x, 1+y, 1+z; ⅴ 1-x, -y, 1-z; ⅵ x, y, 1+z; ⅶ x, 1+y, z; ⅷ 1+x, y-1, z.
Reaction conditions: 2.0 mmol epoxypropane, 2.0 mmol aniline, 0.35% catalyst, 25 ℃.