Citation: Xiaofan ZHANG, Yu DUAN, Meijie SHI, Nan LU, Renhong LI, Xiaoqing YAN. Z-scheme Co3O4/BiOBr heterojunction for efficient photoreduction CO2 reduction[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(9): 1878-1888. doi: 10.11862/CJIC.20250079 shu

Z-scheme Co3O4/BiOBr heterojunction for efficient photoreduction CO2 reduction

  • Corresponding author: Renhong LI,  Xiaoqing YAN, yanxiaoqing927@126.com
  • Received Date: 11 March 2025
    Revised Date: 10 July 2025

Figures(8)

  • A Co3O4/BiOBr heterojunction was synthesized via a facile one-step solvothermal method for highly selective photocatalytic CO2 reduction. The optimized Co3O4/BiOBr-0.8 catalyst exhibited CO and CH4 evolution rates of 112.2 and 5.5 μmol·g-1·h-1, respectively, representing 6.3-fold and 3.9-fold enhancements over pristine BiOBr. The heterojunction demonstrated broadened light absorption, enhanced photoelectrochemical activity, reduced charge-transfer resistance, and improved separation efficiency of photogenerated carriers (e-/h+). These synergistic effects were attributed to the formation of a Z-scheme heterostructure, which facilitated solar energy utilization and electron reduction capacity while suppressing carrier recombination.
  • 加载中
    1. [1]

      LI X, JIANG H P, MA C, ZHU Z, SONG X H, WANG H Q, HUO P W, LI X Y. Local surface plasma resonance effect enhanced Z-scheme ZnO/Au/g-C3N4 film photocatalyst for reduction of CO2 to CO[J]. Appl. Catal. B‒Environ., 2021, 283: 119638  doi: 10.1016/j.apcatb.2020.119638

    2. [2]

      PATIAL S, KUMAR R, RAIZADA P, SINGH P, LE Q V, LICHTFOUSE E, LE TRI NGUYEN D, NGUYEN V H. Boosting light-driven CO2 reduction into solar fuels: Mainstream avenues for engineering ZnO-based photocatalysts[J]. Environ. Res., 2021, 197: 111134  doi: 10.1016/j.envres.2021.111134

    3. [3]

      ZHAO J L, MIAO Z R, ZHANG Y F, WEN G Y, LIU L H, WANG X X, CAO X Z, WANG B Y. Oxygen vacancy-rich hierarchical BiOBr hollow microspheres with dramatic CO2 photoreduction activity[J]. J. Colloid Interface Sci., 2021, 593: 231-243  doi: 10.1016/j.jcis.2021.02.117

    4. [4]

      REN X J, GAO M C, ZHANG Y F, ZHANG Z Z, CAO X Z, WANG B Y, WANG X X. Photocatalytic reduction of CO2 on BiOX: Effect of halogen element type and surface oxygen vacancy mediated mechanism[J]. Appl. Catal. B‒Environ., 2020, 274: 119063  doi: 10.1016/j.apcatb.2020.119063

    5. [5]

      MIAO Z R, WANG Q L, ZHANG Y F, MENG L P, WANG X X. In situ construction of S-scheme AgBr/BiOBr heterojunction with surface oxygen vacancy for boosting photocatalytic CO2 reduction with H2O[J]. Appl. Catal. B‒Environ. Energy, 2022, 301: 120802  doi: 10.1016/j.apcatb.2021.120802

    6. [6]

      CHENG C, HE B W, FAN J J, CHENG B, CAO S W, YU J G. An inorganic/organic S-scheme heterojunction H2-production photocatalyst and its charge transfer mechanism[J]. Adv. Mater., 2021, 33(22): 2100317  doi: 10.1002/adma.202100317

    7. [7]

      LI X, LIU C Y, WU D Y, LI J Z, HUO P W, WANG H Q. Improved charge transfer by size-dependent plasmonic Au on C3N4 for efficient photocatalytic oxidation of RhB and CO2 reduction[J]. Chin. J. Catal., 2019, 40(6): 928-939  doi: 10.1016/S1872-2067(19)63347-4

    8. [8]

      HIRAGOND C B, LEE J, KIM H, JUNG J W, CHO C H, IN S I. A novel N-doped graphene oxide enfolded reduced titania for highly stable and selective gas-phase photocatalytic CO2 reduction into CH4: An in-depth study on the interfacial charge transfer mechanism[J]. Chem. Eng. J., 2021, 416: 127978  doi: 10.1016/j.cej.2020.127978

    9. [9]

      XIONG J, LI X B, HUANG J T, GAO X M, CHEN Z, LIU J Y, LI H, KANG B B, YAO W Q, ZHU Y F. CN/rGO@BPQDs high-low junctions with stretching spatial charge separation ability for photocatalytic degradation and H2O2 production[J]. Appl. Catal. B‒Environ., 2020, 266: 118602  doi: 10.1016/j.apcatb.2020.118602

    10. [10]

      LIANG T, YU Z B, BIN Y J, ZHANG S M, WEI J W, LIU Y J, ZHU T T, FAN S Y, SHEN Y X, WANG S F, HOU Y P. Tungsten and oxygen dual vacancies regulation of the S-scheme ZnSe/ZnWO4 heterojunction with local polarization electric field for efficient CO2 photocatalytic reduction[J]. Chem. Eng. J., 2024, 479: 147942  doi: 10.1016/j.cej.2023.147942

    11. [11]

      ZHU Q L, HUANG W X, SHEN J H, JIANG H B, ZHU Y H, LI C Z. In-situ preparation of BiOBr/Bi-doped CsPbBr3 S-scheme heterojunction for efficient photocatalytic CO2 reduction[J]. Chem. Eng. J., 2024, 499: 156663  doi: 10.1016/j.cej.2024.156663

    12. [12]

      WANG G J, TANG Z W, WANG J, LV S S, XIANG Y J, LI F, LIU C. Energy band engineering of Bi2O2.33CdS direct Z-scheme heterojunction for enhanced photocatalytic reduction of CO2[J]. J. Mater. Sci. Technol., 2022, 111: 17-27  doi: 10.1016/j.jmst.2021.09.018

    13. [13]

      WANG J J, HUANG L, SUN B J, ZHANG H F, HOU D F, QIAO X Q, MA H J, LI D S. Efficient photothermal catalytic CO2 reduction over in situ construction ZnIn2S4@Ni(OH)2/NiO Z-scheme heterojunction[J]. Chem. Eng. J., 2024, 479: 147719  doi: 10.1016/j.cej.2023.147719

    14. [14]

      WANG L, CHEN R J, ZHANG Z Q, CHEN X R, DING J, ZHANG J F, WAN H, GUAN G F. Constructing direct Z-scheme heterojunction g-C3N5/BiOBr for efficient photocatalytic CO2 reduction with H2O[J]. J. Environ. Chem. Eng., 2023, 11(2): 109345  doi: 10.1016/j.jece.2023.109345

    15. [15]

      ZHANG B F, ZHANG M T, ZHANG L, BINGHANM P A, LI W, KUBUKI S. PVP surfactant-modified flower-like BiOBr with tunable bandgap structure for efficient photocatalytic decontamination of pollutants[J]. Appl. Surf. Sci., 2020, 530: 147233  doi: 10.1016/j.apsusc.2020.147233

    16. [16]

      ZHANG Q, YANG P J, ZHANG H X, ZHAO J H, SHI H, HUANG Y M, YANG H Q. Oxygen vacancies in Co3O4 promote CO2 photoreduction[J]. Appl. Catal. B‒Environ., 2022, 300: 120729  doi: 10.1016/j.apcatb.2021.120729

    17. [17]

      WU X L, NG Y H, WANG L, DU Y, DOU S X, AMAL R, SCOTT J. Improving the photo-oxidative capability of BiOBr via crystal facet engineering[J]. J. Mater. Chem. A, 2017, 5(17): 8117-8124  doi: 10.1039/C6TA10964K

    18. [18]

      SHEN M T, ZHU X Y, LIN L W, LI H, WANG Y N, LIANG Q, ZHOU M, LI Z Y, XU S. MOFs-derived S-scheme ZnO/BiOBr heterojunction with rich oxygen vacancy for boosting photocatalytic CO2 reduction[J]. Sep. Purif. Technol., 2025, 353: 128620  doi: 10.1016/j.seppur.2024.128620

    19. [19]

      LIU H B, QIU Y B, GAN W X, ZHUANG G X, CHEN F F, YANG C K, YU Y. MOF-derived Co3O4/ZrO2 mesoporous octahedrons with optimized charge transfer and intermediate conversion for efficient CO2 photoreduction[J]. Sci. China Mater., 2024, 67(2): 588-597  doi: 10.1007/s40843-023-2707-3

    20. [20]

      GUO J G, LIU Y, HAO Y J, LI Y L, WANG X J, LIU R H, LI F T. Comparison of importance between separation efficiency and valence band position: The case of heterostructured Bi3O4Br/α-Bi2O3 photocatalysts[J]. Appl. Catal. B‒Environ., 2018, 224: 841-853  doi: 10.1016/j.apcatb.2017.11.046

    21. [21]

      JIA T, WU J, SONG J, LIU Q Z, WANG J M, QI Y F, HE P, QI X M, YANG L T, ZHAO P C. In situ self-growing 3D hierarchical BiOBr/BiOIO3 Z-scheme heterojunction with rich oxygen vacancies and iodine ions as carriers transfer dual-channels for enhanced photocatalytic activity[J]. Chem. Eng. J., 2020, 396: 125258  doi: 10.1016/j.cej.2020.125258

    22. [22]

      FU J W, JIANG K X, QIU X Q, YU J G, LIU M. Product selectivity of photocatalytic CO2 reduction reactions[J]. Mater. Today, 2020, 32: 222-243  doi: 10.1016/j.mattod.2019.06.009

    23. [23]

      HUANG Q W, TIAN S Q, ZENG D W, WANG X X, SONG W L, LI Y Y, XIAO W, XIE C S. Enhanced photocatalytic activity of chemically bonded TiO2/graphene composites based on the effective interfacial charge transfer through the C—Ti bond[J]. ACS Catal., 2013, 3(7): 1477-1485  doi: 10.1021/cs400080w

    24. [24]

      JIA Y F, ZHANG W B, DO J Y, KANG M, LIU C L. Z-scheme SnFe2O4/α-Fe2O3 micro-octahedron with intimated interface for photocatalytic CO2 reduction[J]. Chem. Eng. J., 2020, 402: 126193  doi: 10.1016/j.cej.2020.126193

    25. [25]

      QIAN Z R, ZHANG L, ZHANG Y F, CUI H. Synergistically boosting of CO2 photoreduction over Bi/BiOBr nanostructure via in-situ formation of oxygen vacancy and metallic Bi[J]. Sep. Purif. Technol., 2023, 324: 124581  doi: 10.1016/j.seppur.2023.124581

    26. [26]

      BI W, HU Y J, JIANG N, ZHANG L, JIANG H, ZHAO X, WANG C Y, LI C Z. Ultra-fast construction of plaque-like Li2TiO3/TiO2 heterostructure for efficient gas-solid phase CO2 photoreduction[J]. Appl. Catal. B‒Environ., 2020, 269: 118810  doi: 10.1016/j.apcatb.2020.118810

    27. [27]

      LIU T X, YANG K C, GONG H M, JIN Z L. Visible-light driven S-scheme Mn0.2Cd0.8S/CoTiO3 heterojunction for photocatalytic hydrogen evolution[J]. Renew. Energy, 2021, 173: 389-400  doi: 10.1016/j.renene.2021.03.146

    28. [28]

      GUAN C S, HOU T, NIE W Y, ZHANG Q, DUAN L B, ZHAO X R. Enhanced photocatalytic reduction of CO2 on BiOBr under synergistic effect of Zn doping and induced oxygen vacancy generation[J]. J. Colloid Interface Sci., 2023, 633: 177-88  doi: 10.1016/j.jcis.2022.11.106

    29. [29]

      NI M M, ZHU Y J, GUO C F, CHEN D L, NING J Q, ZHONG Y J, HU Y. Efficient visible-light-driven CO2 methanation with self- regenerated oxygen vacancies in Co3O4/NiCo2O4 hetero-nanocages: Vacancy-mediated selective photocatalysis[J]. ACS Catal., 2023, 13(4): 2502-2512  doi: 10.1021/acscatal.2c05577

    30. [30]

      FU H, LIU X L, WU Y Q, ZHANG Q Q, WANG Z Y, ZHENG Z K, CHENG H F, LIU Y Y, DAI Y, HUANG B B, WANG P. Construction of a bismuth-based perovskite direct Z-scheme heterojunction Au‑Cs3Bi2Br9/V2O5 for efficient photocatalytic CO2 reduction[J]. Appl. Surf. Sci., 2023, 622: 156964  doi: 10.1016/j.apsusc.2023.156964

    31. [31]

      XU S S, JIANG G C, ZHANG H K, GAO C Y, CHEN Z H, LIU Z H X, WANG J, DU J, CAI B, LI Z. Boosting photocatalytic CO2 methanation through interface fusion over CdS quantum dot aerogels[J]. Small, 2024, 20(38): 2400769

    32. [32]

      SONG Y X, LI X M, LI H, WANG L, XIAO S N, FEI H H, LI G S, SONG X L. Boosted photocatalytic CO2 conversion of a Cs2AgBiBr6@Co3O4 composite with high activity and selectivity under low-concentration CO2 and natural sunlight[J]. Appl. Catal. B‒Environ. Energy, 2025, 363: 124816  doi: 10.1016/j.apcatb.2024.124816

  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Jin ZHANGYuting WANGBin YUYuxin ZHONGYufeng ZHANG . Corn straw-derived carbon/BiOBr composite: Synthesis and photocatalytic degradation performance for rhodamine B. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1397-1408. doi: 10.11862/CJIC.20250028

    4. [4]

      Yaoyin LouXiaoyang Jerry HuangKuang-Min ZhaoMark J. DouthwaiteTingting FanFa LuOuardia AkdimNa TianShigang SunGraham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300

    5. [5]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    6. [6]

      Zekun ZhangShiji LiQian ZhangShanshan LiLiu YangWei YanHao Xu . Further study of CO2 electrochemical reduction to gas products on Cu: Influence of the electrolyte. Chinese Chemical Letters, 2025, 36(9): 110742-. doi: 10.1016/j.cclet.2024.110742

    7. [7]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    8. [8]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    9. [9]

      Xianghai SongXiaoying LiuZhixiang RenXiang LiuMei WangYuanfeng WuWeiqiang ZhouZhi ZhuPengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055

    10. [10]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    11. [11]

      Min ZHUYuxin WANGXiao LIYaxu XUJunwen ZHUZihao WANGYu ZHUXiaochen HUANGDan XUMonsur Showkot Hossain Abul . Construction of AgVO3/ZIF-8 composites for enhanced degradation of tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 994-1006. doi: 10.11862/CJIC.20240392

    12. [12]

      Xinyu WuJianfeng LuZihao ZhuSuijun LiuHerui Wen . Recent advances of metal-organic frameworks and MOF-derived materials based on p-block metal for the electrochemical reduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(7): 110151-. doi: 10.1016/j.cclet.2024.110151

    13. [13]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    14. [14]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    15. [15]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    16. [16]

      Runhua ChenQiong WuJingchen LuoXiaolong ZuShan ZhuYongfu Sun . Defective Ultrathin Two-Dimensional Materials for Photo-/Electrocatalytic CO2 Reduction: Fundamentals and Perspectives. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-0. doi: 10.3866/PKU.WHXB202308052

    17. [17]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    18. [18]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    19. [19]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    20. [20]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

Metrics
  • PDF Downloads(0)
  • Abstract views(112)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return