Citation: Zongsheng LI, Yichao WANG, Yujie WANG, Wenhao ZHU, Xiaoyao YIN, Wudan YANG, Songzhi ZHENG, Weihai SUN. Preparation of CsPbBr3 perovskite solar cells via bottom interface modification with methylammonium chloride[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(9): 1805-1816. doi: 10.11862/CJIC.20250066 shu

Preparation of CsPbBr3 perovskite solar cells via bottom interface modification with methylammonium chloride

  • Corresponding author: Weihai SUN, sunweihai@hqu.edu.cn
  • Received Date: 26 February 2025
    Revised Date: 7 July 2025

Figures(7)

  • By introducing methylammonium chloride (MACl) molecules onto the TiO2 electron transport layer, the TiO2/CsPbBr3 interface was modified to passivate the existing interface defects, while improving the crystallinity and grain size of CsPbBr3 films, thereby enhancing the carrier transport efficiency. Experimental results demonstrated that after modification with a 5.0 mg·mL-1 MACl solution, the device achieved a maximum open-circuit voltage (VOC) of 1.58 V, a short-circuit current density (JSC) of 7.89 mA·cm-2, a fill factor (FF) of 81.09%, and an optimal photoelectric conversion efficiency (PCE) of 10.10%.
  • 加载中
    1. [1]

      TURNER J M. The matter of a clean energy future[J]. Science, 2022, 376(6600): 1361  doi: 10.1126/science.add5094

    2. [2]

      GREEN M A, DUNLOP E D, YOSHITA M, KOPIDAKIS N, BOTHE K, SIEFER G, HAO X, JIANG J Y. Solar cell efficiency tables (Version 66)[J]. Prog. Photovoltaics, 2025, 33(7): 795-810  doi: 10.1002/pip.3919

    3. [3]

      FAN X J. Advanced progress in metal halide perovskite solar cells: A review[J]. Mater. Today Sustain., 2023, 24: 100603

    4. [4]

      ALI N, SHEHZAD N, UDDIN S, AHMED R, JABEEN M, KALAM A, AL-SEHEMI A G, ALROBEI H, KANOUN M B, KHESRO A, GOUMRI-SAID S. A review on perovskite materials with solar cell prospective[J]. Int. J. Energy Res., 2021, 45(14): 19729-19745  doi: 10.1002/er.7067

    5. [5]

      STRANKS S D, EPERON G E, GRANCINI G, MENELAOU C, ALCOCER M, LEIJTENS T, HERZ L M, PETROZZA A, SNAITH H J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 2013, 342(6156): 341-344  doi: 10.1126/science.1243982

    6. [6]

      KIM H S, LEE C R, IM J H, LEE K B, MOEHL T, MARCHIORO A, MOON S J, HUMPHRY-BAKER R, YUM J H, MOSER J E, GRÄTZEL M, PARK N G. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Sci. Rep., 2012, 2: 591  doi: 10.1038/srep00591

    7. [7]

      MA Y H. Research on defects passivation in improving the performance of perovskite solar cells[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2021.

    8. [8]

      ZHU C W, JIN Y N, ZHANG C H, CHEN H H, CHEN S T, FU Y M, WU Y J, SUN W H. High-performance and stable perovskite solar cells prepared with a green bi-solvent method[J]. Chinese J. Inorg. Chem., 2023, 39(6): 1061-1071  doi: 10.11862/CJIC.2023.084

    9. [9]

      QIN L N, ZHU M F, XIA Y R, MA X K, HONG D C, TIAN Y X, TIE Z X, JIN Z. Multifunctional dual-anion compensation of amphoteric glycine hydrochloride enabled highly stable perovskite solar cells with prolonged carrier lifetime[J]. Nano Res., 2024, 17(6): 5131-5137  doi: 10.1007/s12274-024-6428-5

    10. [10]

      SONG J, SUN X Z, YAO Q N, YANG X K, ZHAO Y L, QIANG Y H, REN C G. High-performance and stable perovskite solar cells prepared with a green bi-solvent method[J]. Chinese J. Inorg. Chem., 2023, 39(2): 327-336  doi: 10.11862/CJIC.2022.292

    11. [11]

      ZHU M F, XIA Y R, QIN L N, ZHANG K Q, LIANG J C, ZHAO C, HONG D C, JIANG M H, SONG X M, WEI J, ZHANG P B, TIAN Y X, JIN Z. Reducing surficial and interfacial defects by thiocyanate ionic liquid additive and ammonium formate passivator for efficient and stable perovskite solar cells[J]. Nano Res., 2023, 16(5): 6849-6858  doi: 10.1007/s12274-023-5403-x

    12. [12]

      XIA Y R, ZHU M F, QIN L N, ZAHO C, HONG D C, TIAN Y X, YAN W S, JIN Z. Organic-inorganic hybrid quasi-2D perovskites incorporated with fluorinated additives for efficient and stable four-terminal tandem solar cells[J]. Energy Mater., 2023, 3(1): 300004  doi: 10.20517/energymater.2022.55

    13. [13]

      WANG Z Y, ZHENG S Z, LI H, WENG J B, WANG W, WANG Y, SUN W H. Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells[J]. Chinese J. Inorg. Chem., 2024, 40(7): 1290-1300  doi: 10.11862/CJIC.20240021

    14. [14]

      XU W Z, YAO X, WU H D, ZHU T, GONG X. The compositional engineering of organic-inorganic hybrid perovskites for high-performance perovskite solar cells[J]. Emerg. Mater., 2020, 3(6): 727-750  doi: 10.1007/s42247-020-00128-8

    15. [15]

      SUN X D, XU J, XIAO L, CHEN J, ZHANG B, YAO J X D, AI S Y. Influence of the porosity of the TiO2 film on the performance of the perovskite solar cell[J]. Int. J. Photoenergy, 2017: 4935265

    16. [16]

      ZHAO P J, KIM B J, JUNG H S. Passivation in perovskite solar cells: A review[J]. Mater. Today Energy, 2018, 7: 267-286  doi: 10.1016/j.mtener.2018.01.004

    17. [17]

      MU C, ZOU Y Q, WANG F F, XU D S. Quantitative chlorine doping in methylamine perovskite solar cells [C]//China Renewable Energy Society Photochemical Professional Committee. The 4th Conference on New Generation Solar Cells. [S.l.]: [s.n.], 2017: 265

    18. [18]

      FAN L, DING Y, LUO J S, SHI B, YAO X, WEI C C, ZHANG D K, WANG G C, SHENG Y, CHEN Y F, HAGFELDT A, ZHAO Y, ZHANG X D. Elucidating the role of chlorine in perovskite solar cells[J]. J. Mater. Chem. A, 2017, 5(16): 7423-7432  doi: 10.1039/C7TA00973A

    19. [19]

      MA J, GUO X, ZHOU L, LIN Z H, ZHANG C F, YANG Z, LU G, CHANG J J, HAO Y. Enhanced planar perovskite solar cell performance via contact passivation of TiO2/perovskite interface with NaCl doping approach[J]. ACS Appl. Energy Mater., 2018, 1(8): 3826-3834  doi: 10.1021/acsaem.8b00602

    20. [20]

      AMRAEINIA A, ZUO Y H, ZHENG J, LIU Z, ZHANG G Z, LUO L P, CHENG B W, ZOU X P, LI C B. Interface modification of TiO2 electron transport layer with PbCl2 for perovskiote solar cells with carbon electrode[J]. Tsinghua Sci. Technol., 2022, 27(4): 741-750  doi: 10.26599/TST.2021.9010024

    21. [21]

      LI H, LI D, ZHAO W J, YUAN S H, LIU Z K, WANG D P, LIU S Z. NaCl-assisted defect passivation in the bulk and surface of TiO2 enhancing efficiency and stability of planar perovskite solar cells[J]. J. Power Sources, 2020, 448: 227586  doi: 10.1016/j.jpowsour.2019.227586

    22. [22]

      FU Y, LIU X C, WANG H Y, LI H M, NI Y F, NI W J, LEI Y, PENG Y S. Research on F3EACl modification layer for improving performance of perovskite solar cells[J]. CIESC J., 2023, 74(8): 3554-3563

    23. [23]

      YIN X Y, ZHU W H, SHI P Y, LI Z S, WANG Y C, ZHU N M, WANG Y, SUN W H. Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification[J]. Chinese J. Inorg. Chem., 2025, 41(3): 469-479  doi: 10.11862/CJIC.20240309

    24. [24]

      CHEN C L, ZHANG S S, LIU T L, WU S H, YANG Z C, CHEN W T, CHEN R, CHEN W. Improved open-circuit voltage and ambient stability of CsPbI2Br perovskite solar cells by incorporating CH3NH3Cl[J]. Rare Met., 2020, 39(2): 131-138  doi: 10.1007/s12598-019-01341-z

    25. [25]

      JIN Z M, LI B, XU Y T, ZHU B Y, DING G Q, WANG Y Q, YANG JX, ZHANG Q H, RUI Y C. Confinement of MACl guest in 2D ZIF-8 triggers interface and bulk passivation for efficient and UV-stable perovskite solar cells[J]. J. Mater. Chem. C, 2023, 11(20): 6730-6740  doi: 10.1039/D3TC00609C

    26. [26]

      ZHENG S Z, LI H, WANG Z Y, WANG Y, YIN C, CHEN X H, ZHU W H, SUN W H. Fabrication of CsPbBr3 perovskite solar cells with n-butanol additives[J]. Chin. Sci. Bull., 2024, 69(19): 2814-2826

    27. [27]

      LIANG K B, ZHANG Y Y, WANG C H, HUA G X, YANG W D, JIN Y N, ZHANG C H, CHEN S T, ZHU C W, SUN W H. Effects of DMSO vapor-assisted annealing on the performance of CsPbBr3 perovskite solar cells[J]. Chin. Sci. Bull., 2023, 68(13): 1689-1698

    28. [28]

      ZHU J W, HE B L, YAO X P, CHEN H Y, DUAN Y Y, DUAN J L, TANG Q W. Phase control of Cs-Pb-Br derivatives to suppress 0D Cs4PbBr6 for high-efficiency and stable all-inorganic CsPbBr3 perovskite solar cells[J]. Small, 2022, 18(8): 2106323  doi: 10.1002/smll.202106323

    29. [29]

      DURSUN I, DE BASTIANI M, TUREDI B, ALAMER B, SHKURENKO A, YIN J, EL‑ZOHRY A M, GEREIGE I, ALSAGGAF A, MOHAMMED O F, EDDAOUDI M, BAKR O M. CsPb2Br5 single crystals: Synthesis and characterization[J]. ChemSusChem, 2017, 10(19): 3746-3749  doi: 10.1002/cssc.201701131

    30. [30]

      LIANG K B, WU Y J, ZHEN Q S, ZOU Y, ZHANG X C, WANG C H, SHI P Y, ZHANG Y Y, SUN W H, LI Y L, WU J H. Solvent vapor annealing-assisted mesoporous PbBr2 frameworks for high-performance inorganic CsPbBr3 perovskite solar cells[J]. Surf. Interfaces, 2023, 37: 102707  doi: 10.1016/j.surfin.2023.102707

    31. [31]

      XIN Z, DING Y, ZHAO Y Y, PENG Y, ZHANG Q, CAO Y S, GUO Q Y, DUAN J L, DOU J, SUN L Q, ZHANG Q, TANG Q W. Colloidal stabilizer-mediated crystal growth regulation and defect healing for high-quality perovskite solar cells[J]. Adv. Energy Mater., 2024: 2403018

    32. [32]

      SHAN X Y. Regulation of interface carrier bahavior in perovskite solar cells[D]. Hefei: University of Science and Technology of China, 2021: 115

    33. [33]

      LIU N M, DUAN J L, ZHANG C L, ZHANG J Y, BI Y Y, MA L Z, XU D M, GAO J, DUAN X X, DOU J, GUO Q Y, HE B L, ZHAO Y Y, TANG Q W. SN2-reaction-driven bonding-heterointerface strengthens buried adhesion and orientation for advanced perovskite solar cells[J]. Angew. Chem.‒Int. Edit., 2024, 64(15): e202424046

    34. [34]

      KIM M, KIM G H, LEE T K, CHOI I W, CHOI H W, JO Y, YOON Y J, KIM J W, LEE J, HUH D, LEE H, KWAK S K, KIM J Y, KIM D S. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells[J]. Joule, 2019, 3(9): 2179-2192  doi: 10.1016/j.joule.2019.06.014

    35. [35]

      TONG A L, JIN Z H, CHEN X H, ZHU W H, ZHENG Q S, WANG Y H, WANG Y, MA N G, SUN W H, FU C P, WU J H, LI Y L. Can fullerene derivative PCBM serve as an innovative hole transport material for CsPbBr3 perovskite solar cells?[J]. Chem. Eng. J., 2025, 503: 158507  doi: 10.1016/j.cej.2024.158507

    36. [36]

      WANG S B, CAO F X, SUN W H, WANG C Y, YAN Z L, WANG N, LAN Z, WU J H. A green bi-solvent system for processing high-quality CsPbBr3 films in efficient all-inorganic perovskite solar cells[J]. Mater. Today Phys., 2022, 22: 100614  doi: 10.1016/j.mtphys.2022.100614

    37. [37]

      NIU G D, GUO X D, WANG L D. Review of recent progress in chemical stability of perovskite solar cells[J]. J. Mater. Chem. A, 2015, 3(17): 8970-8980  doi: 10.1039/C4TA04994B

    38. [38]

      ZUO C T, BOLINK H J, HAN H W, HUANG J S, CAHEN D, DING L M. Advances in perovskite solar cells[J]. Adv. Sci., 2016, 3(7): 1500324  doi: 10.1002/advs.201500324

    39. [39]

      KULBAK M, CAHEN D, HODES G. How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells[J]. J. Phys. Chem. Lett., 2015, 6(13): 2452-2456  doi: 10.1021/acs.jpclett.5b00968

    40. [40]

      FAN B B, YING L, ZHU P, PAN F L, LIU F, CHEN J W, HUANG F, CAO Y. All-polymer solar cells based on a conjugated polymer containing siloxane-functionalized side chains with efficiency over 10%[J]. Adv. Mater., 2017, 29(47): 1703906  doi: 10.1002/adma.201703906

    41. [41]

      BLOM P, MIHAILETCHI V D, KOSTER L, MARKOV D E. Device physics of polymer: Fullerene bulk heterojunction solar cells[J]. Adv. Mater., 2007, 19(12): 1551-1566  doi: 10.1002/adma.200601093

    42. [42]

      SINGH T, MIYASAKA T. Stabilizing the efficiency beyond 20% with a mixed cation perovskite solar cell fabricated in ambient air under controlled humidity[J] Adv. Energy Mater., 2018, 8(3): 1700677  doi: 10.1002/aenm.201700677

    43. [43]

      ZOU Y, CAO F X, CHEN P X, HE R W, TONG A L, YIN C, LAN Z, SUN W H, WU J H. Stable and highly efficient all-inorganic CsPbBr3 perovskite solar cells by interface engineering with NiO NCs modification[J]. Electrochim. Acta, 2022, 435: 141392  doi: 10.1016/j.electacta.2022.141392

    44. [44]

      GENG S W, DUAN J L, LIU N M, LI H, ZHU X X, DUAN X X, GUO Q Y, DOU J, HE B L, ZHAO Y Y, TANG Q W. Influence of donor skeleton on intramolecular electron transfer amount for efficient perovskite solar cells[J]. Angew. Chem.‒Int. Edit., 2024, 136(32): e202407383  doi: 10.1002/ange.202407383

    45. [45]

      TONG A L, ZHU C W, YAN H Y, ZHANG C H, JIN Y N, WU Y J, CAO F X, WU J H, SUN W H. Defect control for high-efficiency all-inorganic CsPbBr3 perovskite solar cells via hydrophobic polymer interface passivation[J]. J. Alloy. Compd., 2023, 942: 169084  doi: 10.1016/j.jallcom.2023.169084

    46. [46]

      WANG Z, GAN J, LIU X, SHI H, WEI Q, ZENG Q, QIAO L, ZHENG Y. Over 1 μm electron-hole diffusion lengths in CsPbI2Br for high efficient solar cells[J]. J. Power Sources, 2020, 454: 227913  doi: 10.1016/j.jpowsour.2020.227913

    47. [47]

      WANG S, WANG P, CHEN B, LI R, REN N, LI Y, SHI B, HUANG Q, ZHAO Y, GRÄTZEL M, ZHANG X. Suppressed recombination for monolithic inorganic perovskite/silicon tandem solar cells with an approximate efficiency of 23%[J]. eScience, 2022, 2(3): 339-346  doi: 10.1016/j.esci.2022.04.001

    48. [48]

      KIRBIYIK KURUKAVAK C, YILMAZ T, BÜYÜKBEKAR A, TOK M, KUS M. Phosphorus doped carbon dots additive improves the performance of perovskite solar cells via defect passivation in MAPbI3 films[J]. Mater. Today Commun., 2023, 35: 105668

    49. [49]

      ODYSSEAS KOSMATOS K, THEOFYLAKTOS L, GIANNAKAKI E, DELIGIANNIS D, KONSTANTAKOU M, STERGIOPOULOS T. Methylammonium chloride: A key additive for highly efficient, stable, and up-scalable perovskite solar cells[J]. Energy Environ. Mater., 2019, 2(2): 79-92  doi: 10.1002/eem2.12040

    50. [50]

      KURUKAVAK Ç K, YILMAZ T, BÜYÜKBEKAR A, TOK M, KUŞ M. Phosphorus doped carbon dots additive improves the performance of perovskite solar cells via defect passivation in MAPbI3 films[J]. Mater. Today Commun., 2023, 35: 105668  doi: 10.1016/j.mtcomm.2023.105668

  • 加载中
    1. [1]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    2. [2]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    3. [3]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    4. [4]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    5. [5]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    6. [6]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    7. [7]

      Husitu LinShuangkun ZhangDianfa ZhaoYongkang WangWei LiuFan YangJianjun LiuDongpeng YanZhanpeng Wu . Flexible polyphosphazene nanocomposite films: Enhancing stability and luminescence of CsPbBr3 perovskite nanocrystals. Chinese Chemical Letters, 2025, 36(4): 109795-. doi: 10.1016/j.cclet.2024.109795

    8. [8]

      Sheng TangMingyue LiaoWeihai SunJihuai WuJiamin LuYiming Xie . Optimizing CsPbBr3 perovskite solar cell interface and performance through tetraphenylethene derivatives. Chinese Chemical Letters, 2025, 36(6): 110838-. doi: 10.1016/j.cclet.2025.110838

    9. [9]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    10. [10]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    11. [11]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    12. [12]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    13. [13]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    14. [14]

      Xinyue HanYunhan YangJiayin LuYuxiang LinDongxue ZhangLing LinLiang Qiao . Efficient serum lipids profiling by TiO2-dopamin-assisted MALDI-TOF MS for breast cancer detection. Chinese Chemical Letters, 2025, 36(5): 110183-. doi: 10.1016/j.cclet.2024.110183

    15. [15]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

    16. [16]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    17. [17]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    18. [18]

      Hui BianXinyi YuanNan ZhangZhuo XuJuhong LianRuibin JiangJunqing YanDeng LiShengzhong (Frank) Liu . Correlating vacancy-defect density with CO2 activation for promoted CO2 methanation over CsPbBr3 photocatalyst. Chinese Chemical Letters, 2025, 36(7): 111034-. doi: 10.1016/j.cclet.2025.111034

    19. [19]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    20. [20]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

Metrics
  • PDF Downloads(1)
  • Abstract views(135)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return