Citation: Yingpeng ZHANG, Xingxing LI, Yunshang YANG, Zhidong TENG. A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064 shu

A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine

  • Corresponding author: Yingpeng ZHANG, yingpengzhang@126.com
  • Received Date: 25 February 2025
    Revised Date: 24 April 2025

Figures(14)

  • A fluorescence quenching probe (THI) for visually detecting hydrazine (N2H4) was synthesized and characterized by Knoevenagel condensation reaction using pyrazole derivatives as fluorescent groups. Spectroscopic studies revealed that, under optimal excitation and emission wavelengths, the THI exhibited high selectivity and sensitivity toward N2H4, maintaining excellent anti-interference performance even in the presence of various analytes. Additionally, the THI demonstrated ultrafast response time (18 s), attributed to the efficient nucleophilic addition reaction between its optimized molecular recognition site and N2H4. The detection limit for N2H4 was determined to be 0.141 μmol·L-1, meeting the requirements for trace-level analysis. The detection mechanism, verified by mass spectrometry and density functional theory calculations, is ascribed to N2H4-induced intramolecular charge transfer (ICT), leading to fluorescence quenching. Furthermore, THI was successfully fabricated into test strips for the quantitative detection of N2H4 and applied for fluorescence imaging of N2H4 in HeLa cells.
  • 加载中
    1. [1]

      WANG B B, HE W M, LI X L, ZHAO W, QIU H T, ZHANG H. Engineering a fluorescent probe for the visual and wearable detection of N2H4 in foods, environment samples and biological imaging[J]. Spectroc. Acta Pt. A‒Molec. Biomolec. Spectr., 2025, 327: 125365  doi: 10.1016/j.saa.2024.125365

    2. [2]

      LI Y N, WU X M, YANG S X, LIANG S, TIAN H Y, SUN B G. A natural light visible colorimetric responses fluorescent probe for hydrazine detection[J]. Anal. Sci., 2020, 36(3): 323-327  doi: 10.2116/analsci.19P287

    3. [3]

      TU L P. Study on the design, synthesis and properties of fluorescent probes for hydrazine and several anions[D]. Chengdu: Sichuan University, 2021: 3-4

    4. [4]

      ZHU T, ZHU X J, NIU W F, YU Y, REN X, LIN J. Comparative study of domestic and foreign emission standards for volatile organic compounds[J]. Journal of Mining Science and Technology, 2020, 5(2): 209-218

    5. [5]

      ZHANG M F, CHEN K, SUN J, GAO Z Z, HOU X F. A nanoparticle probe for detecting hydrazine and its bioimaging application[J]. Chemistry, 2021, 84(8): 835-840

    6. [6]

      ZHANG S. Design, synthesis, and its application research of three small molecule fluorescent probes[D]. Lanzhou: Lanzhou University, 2023: 2-21

    7. [7]

      LUO J, LIU B S, ZHANG Y C, WANG B K, GUO B B, SHE L, CHEN T H. Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution [J]. Chinese J. Inorg. Chem., 2024, 40(12): 2438-2444  doi: 10.11862/CJIC.20240240

    8. [8]

      YAN J L, WU W N, WANG Y. A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application[J] Chinese J. Inorg. Chem., 2024, 40(9): 1653-1660  doi: 10.11862/CJIC.20240154

    9. [9]

      ZHANG Y, JU Y, LÜ K D, CHEN W B, HU L Q, YI C L. Application of organic fluorescent probe in food safety detection[J]. Journal of Henan University of Technology (Natural Science Edition), 2023, 44(6): 132-141

    10. [10]

      WANG Q, LIU Y L, WU L F, ZHANG W J, ZUO X L, YANG W D, WU C. Construction of a reaction-based fluorescent probe and its application in the detection of mercury ions in environmental water[J]. Environmental Chemistry, 2024, 43(4): 1392-1400

    11. [11]

      WANG H L, ZHENG H, HUANG J X, HUANG W D, YANG L Y, LI W. A benzoxazole-based turn-on fluorescent probe for visual detection of N2H4[J]. Chinese J. Inorg. Chem., 2024, 40(2): 353-360  doi: 10.11862/CJIC.2023.189

    12. [12]

      SUN X F, ZHU Y Y, XIE X H, SHENG X, WANG S X. Synthesis and properties of hydrazine fluorescent probe based on coumaryn schiff base[J]. Chemical Reagents, 2024, 46(10): 52-57

    13. [13]

      FU D Q, WANG X D, LIU B. Old drug, new use: The thalidomide-based fluorescent probe for hydrazine detection[J]. Spectroc. Acta Pt. A‒Molec. Biomolec. Spectr., 2024, 309: 123808  doi: 10.1016/j.saa.2023.123808

    14. [14]

      JU Z Y, SHU P H, XIE Z Y, JIANG Y Q, TAO W J, XU Z H. A flavone-based fluorescent probe for hydrazine and its bioimaging in live cells[J]. Chin. J. Org. Chem., 2019, 39(3): 697-702

    15. [15]

      CIEPLAK A S. Stereochemistry of nucleophilic addition to cyclohexanone. The importance of two-electron stabilizing interactions[J]. J. Am. Chem. Soc., 2002, 103(15): 4540-4552

    16. [16]

      LIU L, CHEN L, HU X L, ZHONG K L, ZHANG J L, TANG L J. Application and cell imaging of turn-on fluorescent probe for hydrogen sulfide based on benzopyran in food samples[J]. Chin. J. Org. Chem., 2024, 44(6): 2027-2032

    17. [17]

      ZHANG Y P, YANG X, YANG F, YANG Y S, LI X X, ZHANG H R. Pyrazole probes for the detection of N2H4 with ICT properties in live cells and soils[J]. J. Mol. Struct., 2024, 1312: 138498  doi: 10.1016/j.molstruc.2024.138498

    18. [18]

      YANG Z Q, LIU X K, JIANG L N, WANG M. Design, synthesis and application of fluorescence resonance energy transfer-based ratiometric hydrazine fluorescent probe[J]. Chin. J Org Chem., 2019, 39(5): 1483-1488

    19. [19]

      HU Y R, ZHANG S L, LUO H Y, ZHAO L Y, GUO X D, WANG S Q, HU R, YANG G Q. Design and application of a novel chalcone derivative fluorescent probe for aminopeptidase N[J] Chinese J. Org. Chem., 2024, 44(7): 2257-2264

    20. [20]

      HUANG C J, LIU B N, ZHANG S J, WANG P B, XU W R. Synthesis and pharm acological activity of pyrazol[J]. Chinese Journal of New Drugs, 2007, 16(24): 2043-2044

    21. [21]

      LI X F. Synthesis and application of pyrazole-pyrazoline-based fluorescent probes[D]. Lanzhou: Lanzhou University of Technology, 2021: 28-39

    22. [22]

      YANG Y S, ZHANG Z, ZHANG Y P, LIANG Y N, LI X X, TENG Z D. Synthesis and application of specific N2H4 fluorescent probes with AIE effect based on pyrazole structure[J]. J. Fluoresc., 2024, 19: 1-12

    23. [23]

      LAI Q Q, SI S F, QIN T Y, LI B J, WU H X, LIU B, XU H H, ZHAO C. A novel red-emissive probe for colorimetric and ratiometric detection of hydrazine and its application in plant imaging[J]. Sens. Actuator B‒Chem., 2020, 307: 127640

  • 加载中
    1. [1]

      Yuting DUJing YUANPeiyao DENG . Synthesis and application of a fluorescent probe for the detection of reduced glutathione. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461

    2. [2]

      Qiang HUZhiqi CHENZhong CHENXu WANGWeina WU . Pyridinium-chalcone-based ClO- fluorescent probe: Preparation and biological imaging applications. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1789-1795. doi: 10.11862/CJIC.20250086

    3. [3]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    4. [4]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    5. [5]

      Pengli GUANRenhu BAIXiuling SUNBin LIU . Trianiline-derived aggregation-induced emission luminogen probe for lipase detection and cell imaging. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1817-1826. doi: 10.11862/CJIC.20250058

    6. [6]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    7. [7]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    8. [8]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    9. [9]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    10. [10]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    11. [11]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    12. [12]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    13. [13]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    14. [14]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    15. [15]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    16. [16]

      Yi Fan Zhuoqi Jiang Zhipeng Li Xuan Zhou Jingan Lin Laiying Zhang Xu Hou . 偶极诱导液体门控可视化物质检测——化学“101计划”表界面性质应用实验新设计. University Chemistry, 2025, 40(8): 265-271. doi: 10.12461/PKU.DXHX202410061

    17. [17]

      Weilai YuChuanbiao Bie . Unveiling S-Scheme Charge Transfer Mechanism. Acta Physico-Chimica Sinica, 2024, 40(4): 2307022-0. doi: 10.3866/PKU.WHXB202307022

    18. [18]

      Yanxin Wang Hongjuan Wang Yuren Shi Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005

    19. [19]

      Ruming Yuan Laiying Zhang Xiaoming Xu Pingping Wu Gang Fu . Application of Mathematica in Visualizing Physical Chemistry Formulas. University Chemistry, 2024, 39(8): 375-382. doi: 10.3866/PKU.DXHX202401030

    20. [20]

      Longping Li Jiali Li Tiange Qu Jiaqing Cai Chuyu Zhang Wenji Guo Qiulian Li Fan Luo . “可视化”助力从茶叶中提取咖啡因实验的关键步——升华. University Chemistry, 2025, 40(8): 272-276. doi: 10.12461/PKU.DXHX202409137

Metrics
  • PDF Downloads(0)
  • Abstract views(337)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return