Citation: Pengli GUAN, Renhu BAI, Xiuling SUN, Bin LIU. Trianiline-derived aggregation-induced emission luminogen probe for lipase detection and cell imaging[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(9): 1817-1826. doi: 10.11862/CJIC.20250058 shu

Trianiline-derived aggregation-induced emission luminogen probe for lipase detection and cell imaging

  • Corresponding author: Bin LIU, liubin@sxu.edu.cn
  • Received Date: 21 February 2025
    Revised Date: 19 May 2025

Figures(12)

  • As a potential biomarker for breast cancer, the highly sensitive detection of lipase is conducive to improving the accuracy of disease diagnosis. Lipase has the property that it can react with the reactant at the contact surface, such as when a solid in solution reacts with lipase. Illuminated by the lipase catalytic property, a lipase-responsive fluorescent probe BTPA with the aggregation-induced emission (AIE) was designed and synthesized. The probe could be hydrolyzed by the lipase enzyme and emit yellow fluorescence, because it self-aggregated into granulums with the external solution, and the granulums provided a surface to activate the activity of the lipase enzyme. The fluorescence emission intensity of BTPA was linearly correlated with the activity of lipase in a range of 5.0×10-5-4.5×10-4 U·mL-1, and the detection limit was 4.94×10-6 U·mL-1. Besides, the probe could be applied in a complex biochemical system investigated by a selectivity and interference experiment. The laser-confocal imaging experiment showed that the fluorescent probe could accurately identify breast cancer cells in situ and emit strong fluorescence.
  • 加载中
    1. [1]

      BRAY F, LAVERSANNE M, SUNG H, FERLAY J, REBECCA L, SIEGEL R L, SOERJOMATARAM I, SOERJOMATARAM I, JEMAL A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J. Clin., 2024, 74(3): 229-263

    2. [2]

      FRANCESCHINI G. Reevaluating the promise: Is primary tumor surgery really the key to survival or just a misinterpretation in de novo stage Ⅳ breast cancer?[J]. Expert Rev. Anticancer Ther., 2025, 25(2): 189-190  doi: 10.1080/14737140.2025.2454998

    3. [3]

      KONDAPALLI K, DONEPUDI M, AMOS S, VENKANTESHAN P. Breast cancer statistics and markers[J]. J. Canc. Res. Ther., 2014, 10(3): 506-511  doi: 10.4103/0973-1482.137927

    4. [4]

      SWEEP C G, GEURTS-MOESPOT J, GREBENSCHIKOV N, DE WITTE J H, HEUVEL J J, SCHMITT M, DUFFY M J, JÄNICKE F, KRAMER M D, FOEKENS J A, BRÜNNER N, BRUGAL G, PEDERSEN A N, BENRAAD T J. External quality assessment of trans-European multicentre antigen determinations (enzyme-linked immunosorbent assay) of urokinase-type plasminogen activator (uPA) and its type 1 inhibitor (PAI-1) in human breast cancer tissue extracts[J]. Br. J. Cancer, 1998, 78(11): 1434-1441  doi: 10.1038/bjc.1998.704

    5. [5]

      HAYES D F, TROCK B, HARRIS A L. Assessing the clinical impact of prognostic factors: When is "statistically significant" clinically useful?[J]. Breast Cancer Res. Treat., 1998, 52: 305-319  doi: 10.1023/A:1006197805041

    6. [6]

      HAYES D F. Do we need better prognostic factors in node-negative breast cancer? Arbiter[J]. Eur. J. Cancer, 2000, 36(3): 302-306  doi: 10.1016/S0959-8049(99)00303-2

    7. [7]

      WEN Y, JING N, ZHANG M, HUO F J, LI Z Y, YIN C X. A space-dependent 'enzyme-substrate' type probe based on 'carboxylesterase-amide group' for ultrafast fluorescent imaging orthotopic hepatocellular carcinoma[J]. Adv. Sci., 2023, 10(8): 2206681  doi: 10.1002/advs.202206681

    8. [8]

      CUI Y N, JIAO Y, WANG K, HE M, YANG Z Y. A new prognostic factor of breast cancer: High carboxyl ester lipase expression related to poor survival[J]. Cancer Genet., 2019, 239: 54-61  doi: 10.1016/j.cancergen.2019.09.005

    9. [9]

      GAGO DOMINGUEZ M, REDONDO C M, CALAZA M, MATABUENA M, BERMUDEZ M A, PEREZ-FERNANDEZ R, TORRES-ESPAÑOL M, CARRACEDO Á, CASTELAO J E. LIPG endothelial lipase and breast cancer risk by subtypes[J]. Sci. Rep., 2021, 11(1): 10436  doi: 10.1038/s41598-021-89669-4

    10. [10]

      ROSSI T, ZAMPONI R, CHIRICO M, PISANU M E, IORIO E, TORRICELLI F, GUGNONI M, CIARROCCHI A, PISTONI M. BETi enhance ATGL expression and its lipase activity to exert their antitumoral effects in triple-negative breast cancer (TNBC) cells[J]. J. Exp. Clin. Cancer Res., 2023, 42(1): 7  doi: 10.1186/s13046-022-02571-3

    11. [11]

      REVIGLIO C, VOLPI G, WYART E, CIUBINI B, PRANDI C, BAROLO C, PORPORATO P E, GARINO C. Imidazopyridines as fluorogenic substrates for esterase detection[J]. J. Photochem. Photobiol., A, 2025, 462: 116256  doi: 10.1016/j.jphotochem.2024.116256

    12. [12]

      CIUFFREDA P, XYNOMILAKIS O, CASATI S, OTTRIA R. Fluorescence-based enzyme activity assay: Ascertaining the activity and inhibition of endocannabinoid hydrolytic enzymes[J]. 2024, 25(14): 7693

    13. [13]

      HAN M R, WEI X Y, FENG S S, BAI Y T. A zinc-based metal-organic framework for fluorescence detection of trace Cu2+[J]. Chinese J. Inorg. Chem., 2024, 40(8): 1603-1614  doi: 10.11862/CJIC.20240150

    14. [14]

      YANG D D, XUE J H, YANG Y Y, WU M X, BAI Y J, WANG Z X, MA Q. Design and synthesis of two coordination polymers for the rapid detection ofciprofloxacin based on triphenylpolycarboxylic acid ligands[J]. Chinese J. Inorg. Chem., 2024, 40(12): 2466-2474  doi: 10.11862/CJIC.20240266

    15. [15]

      GUAN P L, SHI S M, ZHANG T S, CHAI J, YANG B S, LIU B. A strategy to distinguish cancers from normal cells through lysosomal targeted double site fluorescent probe for lipase and hydrogen sulfide[J]. Dyes Pigment., 2022, 205: 110545  doi: 10.1016/j.dyepig.2022.110545

    16. [16]

      GUAN P L, YANG B S, CHAI J, WEN G, LIU B. A stable hydrazine clicks fluorescent probe based on photo switch[J]. Dyes Pigment., 2021, 186: 108983  doi: 10.1016/j.dyepig.2020.108983

    17. [17]

      GUAN P L, YANG B S, LIU B. Fabricating a fluorescence resonance energy transfer system with AIE molecular for sensitive detection of Cu(Ⅱ) ions[J]. Spectroc. Acta Pt. A‒Molec. Biomolec. Spectr., 2020, 225: 117604  doi: 10.1016/j.saa.2019.117604

    18. [18]

      GUAN P L, LIU Y M, YANG B S, WU Y B, CHAI J, WEN G M, LIU B. Fluorometric probe for the lipase level: Design, mechanism and biological imaging application[J]. Talanta, 2021, 225: 121948  doi: 10.1016/j.talanta.2020.121948

    19. [19]

      BAI J K, XU T, ZHANG L, PENG J, LI Y Q, JIA J H. A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid[J]. Chinese J. Inorg. Chem., 2024, 40(6): 1095-1440  doi: 10.11862/CJIC.20240002

    20. [20]

      YAN J L, WU W N, WANG Y. A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application[J]. Chinese J. Inorg. Chem., 2024, 40(9): 1653-1660

    21. [21]

      ZHANG Y Y, CHEN W, FENG D, SHI W, LI X H, MA H M. A spectroscopic off-on probe for simple and sensitive detection of carboxylesterase activity and its application to cell imaging[J]. Analyst, 2012, 137(3): 716-721  doi: 10.1039/C2AN15952J

    22. [22]

      RODRIGUEZ-RIOS M, MEGIA-FERNANDEZ A, NORMAN D J, BRADLEY M. Peptide probes for proteases‒Innovations and applications for monitoring proteolytic activity[J]. Chem. Soc. Rev., 2022, 51(6): 2081-2120

    23. [23]

      SONG Y Q, JIN Q, WANG D D, HOU J, ZOU L W, GE G B. Carboxylesterase inhibitors from clinically available medicines and their impact on drug metabolism[J]. Chem. Biol. Interact., 2021, 345: 109566

    24. [24]

      FAN H W, FANG N, YANG B B, XIAN H, LI Z. Fluorescence lifetime imaging of human pancreatic lipase activity using a novel probe for early diagnosis of severe acute pancreatitis[J]. Spectroc. Acta Pt. A‒Molec. Biomolec. Spectr., 2025, 326: 125171  doi: 10.1016/j.saa.2024.125171

    25. [25]

      LUO J D, XIE Z L, LAM J W Y, CHENG L, TANG B Z, CHEN H Y, QIU C F, KWOK H S, ZHAN X W, LIU Y Q, ZHU D B. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole[J]. Chem. Commun., 2001, 18: 1740-1741

    26. [26]

      WANG Y L, LI C, QU H Q, FAN C, ZHAO P J, TIAN R, ZHU M Q. Real-time fluorescence in situ visualization of latent fingerprints exceeding level 3 details based on aggregation-induced emission[J]. J. Am. Chem. Soc., 2020, 142(16): 7497-7505

    27. [27]

      LUO J D, XIE Z L, LAM J W Y, CHENG L, CHEN H Y, QIU C F, KWOK H S, ZHAN X W, LIU Y Q, ZHU D B, TANG B Z. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole[J]. Chem. Commun., 2001, 18: 1740-1741

    28. [28]

      WAN H B, XU Q F, GU P Y, LI H, CHEN D Y, LI N J, HE J H, LU J M. AIE-based fluorescent sensors for low concentration toxic ion detection in water[J]. J. Hazard. Mater., 2021, 403: 123656

    29. [29]

      WÜRTHNER F. Aggregation-induced emission (AIE): A historical perspective[J]. Angew. Chem.‒Int. Edit., 2020, 59(34): 14192-14196

    30. [30]

      CEN P P, HUANG J N, JIN C T, WANG J, WEI Y, ZHANG H, TIAN M. Aggregation-induced emission luminogens for in vivo molecular imaging and theranostics in cancer[J]. Aggregate, 2023, 4(5): e325

    31. [31]

      CHEN Y Y, JIANG H, HAO T T, ZHANG N, LI M Y, WANG X Y, WANG X X, WEI W, ZHAO J. Fluorogenic reactions in chemical biology: Seeing chemistry in cells[J]. Chem. Biomed. Imaging, 2023, 1(7): 590-619

    32. [32]

      WANG S Y, ZHOU K, LYU X Y, LI H W, QIU Z J, ZHAO Z, TANG B Z. The bioimaging story of AIEgens[J]. Chem. Biomed. Imaging, 2023, 1(6): 509-521

  • 加载中
    1. [1]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    2. [2]

      Yuting DUJing YUANPeiyao DENG . Synthesis and application of a fluorescent probe for the detection of reduced glutathione. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461

    3. [3]

      Qiang HUZhiqi CHENZhong CHENXu WANGWeina WU . Pyridinium-chalcone-based ClO- fluorescent probe: Preparation and biological imaging applications. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1789-1795. doi: 10.11862/CJIC.20250086

    4. [4]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    5. [5]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    6. [6]

      Yingpeng ZHANGXingxing LIYunshang YANGZhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064

    7. [7]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    8. [8]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    9. [9]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    10. [10]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    11. [11]

      Jiahao Zeng Hui Chao . 诱导程序性细胞死亡的金属抗肿瘤药物研究. University Chemistry, 2025, 40(6): 145-159. doi: 10.12461/PKU.DXHX202406019

    12. [12]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    13. [13]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    14. [14]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    15. [15]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    16. [16]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

    17. [17]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    18. [18]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    19. [19]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    20. [20]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

Metrics
  • PDF Downloads(0)
  • Abstract views(124)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return