Citation: Xiangyu CHEN, Zhenzhen MIAO, Ligang XU, Guangbao WU, Zhuang LIU, Wenzhen LÜ, Runfeng CHEN. Research progress on low-dimensional organic-inorganic hybrid metal halide optoelectronic materials[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(11): 2201-2217. doi: 10.11862/CJIC.20250056 shu

Research progress on low-dimensional organic-inorganic hybrid metal halide optoelectronic materials

Figures(9)

  • Organic-inorganic hybrid metal halides (OIHMHs) have garnered extensive attention from researchers due to their tunable optoelectronic properties, high fluorescence quantum yield, narrow emission spectra, and ease of fabrication. Various OIHMHs with diverse structures, dimensions, and excellent performance can be synthesized by selecting different organic cation templates. In recent years, significant progress has been made, particularly in the study of low-dimensional OIHMHs optoelectronic materials. Here, we try to provide an in-depth analysis of the crystal structures and synthesis methods of these materials, summarize their optical properties and mechanisms, and review their applications in white-light emitting diodes (WLEDs), X-ray detectors, sensors, and solar cells. Finally, we discuss the current challenges and offer prospects for the future development of these materials, aiming to provide a valuable reference for advancing research and innovation in low-dimensional OIHMHs.
  • 加载中
    1. [1]

      TAILOR N K, KAR S, MISHRA P, THESE A, KUPFER C, HU H L, AWAIS M, SAIDAMINOV M, DAR M I, BRABEC C, SATAPATHI S. Advances in lead-free perovskite single crystals: Fundamentals and applications[J]. ACS Mater. Lett., 2021,3(7):1025-1080. doi: 10.1021/acsmaterialslett.1c00242

    2. [2]

      ZHOU C K, LIN H R, HE Q Q, XU L J, WORKU M, CHAABAN M, LEE S, SHI X Q, DU M H, MA B W. Low dimensional metal halide perovskites and hybrids[J]. Mater. Sci. Eng. R‒Rep., 2019,137:38-65. doi: 10.1016/j.mser.2018.12.001

    3. [3]

      LV W Z, LI L, XU M C, HONG J X, TANG X X, XU L G, WU Y H, ZHU R, CHEN R F, HUANG W. Improving the stability of metal halide perovskite quantum dots by encapsulation[J]. Adv. Mater., 2019,31(28)1900682. doi: 10.1002/adma.201900682

    4. [4]

      RODKEY N, ZANONI K P S, PIOT M, DREESSEN C, GROTE R, CARROY P, ALONSO J E S, PALIWAL A, MUNOZ D, BOLINK H J. Efficient micrometer thick bifacial perovskite solar cells[J]. Adv. Energy Mater., 2024,14(21)2400058. doi: 10.1002/aenm.202400058

    5. [5]

      BALAGUERA E H, BISQUERT J. Accelerating the assessment of hysteresis in perovskite solar cells[J]. ACS Energy Lett., 2024,9(2):478-486. doi: 10.1021/acsenergylett.3c02779

    6. [6]

      ZHANG F, CHEN X, QI X F, LIANG W Q, WANG M, MA Z Z, JI X Z, YANG D W, JIA M C, WU D, LI X J, ZHANG Y, SHI Z F, SHAN C X. Regulating the singlet and triplet emission of Sb ions to achieve single-component white-light emitter with record high color-rendering index and stability[J]. Nano Lett., 2022,22(12):5046-5054. doi: 10.1021/acs.nanolett.2c00733

    7. [7]

      LIU Z B, JI X Z, MA Z Z, ZHANG F, QI X F, CHEN X, WU D, LIU Y, JIA M C, LI X J, ZHANG Y, SHAN C X, SHI Z F. Healthy and high-quality single-source lighting based on double-doped tin halide engineering[J]. Laser Photonics Rev., 2023,17(9)2300094. doi: 10.1002/lpor.202300094

    8. [8]

      MARTÍNEZ-GOYENECHE L, GIL-ESCRIG L, SUSIC I, TORDERA D, BOLINK H J, SESSOLO M. Narrowband monolithic perovskite-perovskite tandem photodetectors[J]. Adv. Opt. Mater., 2022,10(22)2201047. doi: 10.1002/adom.202201047

    9. [9]

      XING D, CHEN M H, WANG Z Y, DENG C Z, HO Y L, LIN B W, LIN C C, CHEN C W, DELAUNAY J J. Solution-processed perovskite quantum dot quasi-BIC laser from miniaturized low-lateral-loss cavity[J]. Adv. Funct. Mater., 2024,34(26)202314953.

    10. [10]

      ZHANG J, QIN J J, CAI W D, TANG Y P, ZHANG H T, WANG T, BAKULIN A, HU B, LIU X K, GAO F. Transport layer engineering toward lower threshold for perovskite lasers[J]. Adv. Mater., 2023,35(30)2300922. doi: 10.1002/adma.202300922

    11. [11]

      LIAN H W, ZHANG W X, ZOU R, GU S M, KUANG R Y, ZHU Y F, ZHANG X Y, MA C G, WANG J, LI Y. Aqueous-based inorganic colloidal halide perovskites customizing liquid scintillators[J]. Adv. Mater., 2023,35(51)2304743. doi: 10.1002/adma.202304743

    12. [12]

      XIA M L, XIE Z X, WANG H Q, JIN T, LIU L Y, KANG J, SANG Z R, YAN X C, WU B N, HU H, TANG J, NIU G D. Sub-nanosecond 2D perovskite scintillators by dielectric engineering[J]. Adv. Mater., 2023,35(18)2211769. doi: 10.1002/adma.202211769

    13. [13]

      WELLS H L. Über die cäsium- und kalium-bleihalogenide[J]. Z. Anorg. Chem., 2004, 3(1): 195-210 WELLS H L. On the cesium and potassium lead halides[J]. Z. Anorg. Chem., 2004, 3(1): 195-210

    14. [14]

      KOJIMA A, TESHIMA K, SHIRAI Y, MIYASAKA T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J. Am. Chem. Soc., 2009,131(17):6050-6051. doi: 10.1021/ja809598r

    15. [15]

      TAN Z K, MOGHADDAM R S, LAI M L, DOCAMPO P, HIGLER R, DESCHLER F, PRICE M, SADHANALA A, PAZOS L M, CREDGINGTON D, HANUSCH F, BEIN T, SNAITH H J, FRIEND R H. Bright light‑emitting diodes based on organometal halide perovskite[J]. Nat. Nanotechnol., 2014,9(9):687-692. doi: 10.1038/nnano.2014.149

    16. [16]

      FU W, CHEN H, JEN A K Y. Two-dimensional perovskites for photovoltaics[J]. Mater. Today Nano, 2021,14100117. doi: 10.1016/j.mtnano.2021.100117

    17. [17]

      ZHANG Y, WANG R, TAN Z A. Crystal growth of two-dimensional organic-inorganic hybrid perovskites and their application in photovoltaics[J]. J. Mater. Chem. A, 2023,11(22):11607-11636. doi: 10.1039/D3TA01496G

    18. [18]

      GE L, WANG Y, GAO X, LI M, ZHANG R Q, LIU S Y, YU Y H, LI M G, XU L G, TAO Y, CHEN R F, LV W Z. Stimulating efficient and stable ultralong phosphorescence of 2D perovskites by dual-mode triplet exciton stabilization[J]. Chem. Mater., 2022,34(19):8917-8924. doi: 10.1021/acs.chemmater.2c01501

    19. [19]

      CHEN Y, LIU B B, ZHOU Q, MA D Q, HAN X, HE D M, CHEN S, LI Y L, LU S R, XU Z X, CHEN C, YU H, CHEN J Z. Critical role of 1D materials in realizing efficient and stable perovskite solar cells[J]. J. Mater. Chem. A, 2023,11(35):18592-18604. doi: 10.1039/D3TA03174H

    20. [20]

      YUAN Z, ZHOU C K, TIAN Y, SHU Y, MESSIER J, WANG J C, VAN DE BURGT L J, KOUNTOURIOTIS K, XIN Y, HOLT E, SCHANZE K, CLARK R, SIEGRIST T, MA B W. One-dimensional organic lead halide perovskites with efficient bluish white-light emission[J]. Nat. Commun., 2017,8(1)14051. doi: 10.1038/ncomms14051

    21. [21]

      ZHANG W F, PAN H M, MA Y Y, LI D Y, JING Z. One-dimensional corner-sharing perovskites: Syntheses, structural evolutions and tunable photoluminescence properties[J]. J. Mol. Struct., 2022, 1253132221.

    22. [22]

      WANG F, DUAN D W, ZHOU K, XUE Y Z B, LIANG X, ZHOU X F, GE C Y, ZHOU C, XIANG J, ZHU J J, ZHU Q Y, LIN H R, SHI Y M, CHEN Y H, LI G, HU H L. Ionic liquid engineering enabled in-plane orientated 1D perovskite nanorods for efficient mixed- dimensional perovskite photovoltaics[J]. Infomat, 2023,5(8)e12459. doi: 10.1002/inf2.12459

    23. [23]

      HU H, ZHANG Y, HUANG S S, LI Z G, LIU Y G, FENG R, LI W. Temperature- and pressure-responsive photoluminescence in a 1D hybrid lead halide[J]. Chin. J. Struct. Chem., 2024,43(10)100395.

    24. [24]

      GAO H Z, LU Z Y, ZHAO X X, ZHANG K, ZHU X D, CHENG R X, LI S L, QI Z K, ZHANG X M. Singlet exciton and singlet/triplet self-trapped excitons for ultra-broadband white-light emission in a zero-dimensional cadmium bromide hybrid[J]. J. Mater. Chem. C, 2023,11(26):9023-9029. doi: 10.1039/D3TC01436C

    25. [25]

      TAN L, LUO Z S, LI Q, FAN X K, ZOU C, XU B, CHANG X Y, ZHANG Y Z, QUAN Z W. The correlation between structural factors and stokes shifts in zero-dimensional antimony(Ⅲ) halides[J]. J. Lumin., 2024,269120509. doi: 10.1016/j.jlumin.2024.120509

    26. [26]

      ZHOU C K, LIN H R, SHI H L, TIAN Y, PAK C, SHATRUK M, ZHOU Y, DJUROVICH P, DU M H, MA B W. A zero-dimensional organic seesaw-shaped tin bromide with highly efficient strongly stokes-shifted deep-red emission[J]. Angew. Chem. ‒Int. Edit., 2018,57(4):1021-1024. doi: 10.1002/anie.201710383

    27. [27]

      KAWAI T, ISHII A, KITAMURA T, SHIMANUKI S, IWATA M, ISHIBASHI Y. Optical absorption in band-edge region of (CH3NH3)3 Bi2I9 single crystals[J]. J. Phys. Soc. Jpn., 1996,65(5):1464-1468. doi: 10.1143/JPSJ.65.1464

    28. [28]

      PALAZON F, EL AJJOURI Y, BOLINK H J. Making by grinding: Mechanochemistry boosts the development of halide perovskites and other multinary metal halides[J]. Adv. Energy Mater., 2020,10(13)1902499. doi: 10.1002/aenm.201902499

    29. [29]

      XU Y C, DONG W X, SU P, LANG T C, HE H C, JIANG H M, JIA B, LIU X Y, HAN T. Mn-doped M2CdCl4 (M=CH3NH3+, C2H8N+, and C3H10N+) layered hybrid perovskite and its flexible film based on simple mechanochemical synthesis[J]. Inorg. Chem., 2024,63(5):2562-2568. doi: 10.1021/acs.inorgchem.3c03751

    30. [30]

      HE Z L, WEI J H, LUO J B, ZHANG Z Z, KUANG D B. Reversible human-temperature-responsive luminescence switching in a Mn(Ⅱ)-based metal halide[J]. J. Mater. Chem. C, 2023,11(4):1251-1257. doi: 10.1039/D2TC04727F

    31. [31]

      SHEN Y, LIU Y C, YE H C, ZHENG Y T, WEI Q, XIA Y D, CHEN Y H, ZHAO K, HUANG W, LIU S Z. Centimeter-sized single crystal of two-dimensional halide perovskites incorporating straight-chain symmetric diammonium ion for X-ray detection[J]. Angew. Chem. ‒Int. Edit., 2020,59(35):14896-14902. doi: 10.1002/anie.202004160

    32. [32]

      ZHUMEKENOV A A, BURLAKOV V M, SAIDAMINOV M I, ALOFI A, HAGUE M A, TUREDI B, DAVAASUREN B, DURSUN I, CHO N, EL-ZOHRY A M, DE BASTIANI M, GIUGNI A, TORRE B, DI FABRIZIO E, MOHAMMED O F, ROTHENBERGER A, WU T, GORIELY A, BAKR O M. The role of surface tension in the crystallization of metal halide perovskites[J]. ACS Energy Lett., 2017,2(8):1782-1788. doi: 10.1021/acsenergylett.7b00468

    33. [33]

      ZHANG Y X, LIU Y C, XU Z, YE H C, LI Q X, HU M X, YANG Z, LIU S Z. Two-dimensional (PEA)2PbBr4 perovskite single crystals for a high performance UV-detector[J]. J. Mater. Chem. C, 2019,7(6):1584-1591. doi: 10.1039/C8TC06129G

    34. [34]

      LIU W, XIE H D, CAI W T, ZHANG R Q, XU B, YANG C. Rapid synthesis of two photoluminescent pyridinium manganese‑based halides by an anti-solvent method[J]. J. Alloy. Compd., 2023,968172173. doi: 10.1016/j.jallcom.2023.172173

    35. [35]

      WANG N N, CHENG L, GE R, ZHANG S T, MIAO Y F, ZOU W, YI C, SUN Y, CAO Y, YANG R, WEI Y Q, GUO Q, KE Y, YU M T, JIN Y Z, LIU Y, DING Q Q, DI D W, YANG L, XING G C, TIAN H, JIN C H, GAO F, FRIEND R H, WANG J P, HUANG W. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells[J]. Nat. Photonics, 2016,10(11):699-704. doi: 10.1038/nphoton.2016.185

    36. [36]

      HUANG Y, PAN Y H, YANG R, BAO L H, MENG L, LUO H L, CAI Y Q, LIU G D, ZHAO W J, ZHOU Z, WU L M, ZHU Z L, HUANG M, LIU L W, LIU L, CHENG P, WU K H, TIAN S B, GU C Z, SHI Y G, GUO Y F, CHENG Z G, HU J P, ZHAO L, YANG G H, SUTTER E, SUTTER P, WANG Y L, JI W, ZHOU X J, GAO H J. Universal mechanical exfoliation of large-area 2D crystals[J]. Nat. Commun., 2020,11(1)2453. doi: 10.1038/s41467-020-16266-w

    37. [37]

      LI J Z, WANG J, MA J Q, SHEN H Z, LI L, DUAN X F, LI D H. Self-trapped state enabled filterless narrowband photodetections in 2D layered perovskite single crystals[J]. Nat. Commun., 2019,10(1)806. doi: 10.1038/s41467-019-08768-z

    38. [38]

      ZHANG Q K, WANG Y X, ZHAO C F. Self-trapped excitons in metal halide perovskite semiconductors[J]. Progress in Physic, 2023,43(6):161-177.

    39. [39]

      STADLER W, HOFMANN D M, ALT H C, MUSCHIK T, MEYER B K. Optical investigations of defects in Cd1-xZnxTe[J]. Phys. Rev. B, 1995,51(16):10619-10630. doi: 10.1103/PhysRevB.51.10619

    40. [40]

      LUO J J, WANG X M, LI S R, LIU J, GUO Y M, NIU G D, YAO L, FU Y H, GAO L, DONG Q S, ZHAO C Y, LENG M Y, MA F S, LIANG W X, WANG L D, JIN S Y, HAN J B, ZHANG L J, ETHERIDGE J, WANG J B, YAN Y F, SARGENT E H, TANG J. Efficient and stable emission of warm-white light from lead-free halide double perovskites[J]. Nature, 2018,563(7732):541-545. doi: 10.1038/s41586-018-0691-0

    41. [41]

      GUO Q X, ZHAO X, SONG B X, LUO J J, TANG J. Light emission of self-trapped excitons in inorganic metal halides for optoelectronic applications[J]. Adv. Mater., 2022,34(52)2201008. doi: 10.1002/adma.202201008

    42. [42]

      SMITH M D, KARUNADASA H I. White-light emission from layered halide perovskites[J]. Acc. Chem. Res., 2018,51(3):619-627. doi: 10.1021/acs.accounts.7b00433

    43. [43]

      ZHENG G Y, WU H D, DONG Z W, JIN T, PANG J C, LIU Y J, ZHENG Z P, NIU G D, XU L, TANG J. Direct X-ray detectors made of zero-dimensional hybrid metal halide perovskite single crystals[J]. J. Mater. Chem. C, 2024,12(17):6288-6296. doi: 10.1039/D4TC00594E

    44. [44]

      ZHOU B, FANG F E, LIU Z X, ZHONG H Z, ZHOU K, HU H L, MIN J C, ZHENG F Y, FANG S F, NIE J H, HUANG J K, LI L J, LI H A, WAN Y, SHI Y M. Self-trapped exciton emission in highly polar 0D hybrid ammonium/hydronium-based perovskites triggered by antimony doping[J]. J. Am. Chem. Soc., 2024,146(22):15198-15208. doi: 10.1021/jacs.4c02108

    45. [45]

      WANG S S, YAO Y P, KONG J T, ZHAO S G, SUN Z H, WU Z Y, LI L N, LUO J H. Highly efficient white-light emission in a polar two-dimensional hybrid perovskite[J]. Chem. Commun., 2018,54(32):4053-4056. doi: 10.1039/C8CC01663A

    46. [46]

      MAO L L, WU Y L, STOUMPOS C C, WASIELEWSKI M R, KANATZIDIS M G. White-light emission and structural distortion in new corrugated two-dimensional lead bromide perovskites[J]. J. Am. Chem. Soc., 2017,139(14):5210-5215. doi: 10.1021/jacs.7b01312

    47. [47]

      FEBRIANSYAH B, BORZDA T, CORTECCHIA D, NEUTZNER S, FOLPINI G, KOH T M, LI Y X, MATHEWS N, PETROZZA A, ENGLAND J. Metal coordination sphere deformation induced highly stokes-shifted, ultra broadband emission in 2D hybrid lead-bromide perovskites and investigation of its origin[J]. Angew. Chem. ‒Int. Edit., 2020,59(27):10791-10796. doi: 10.1002/anie.201915708

    48. [48]

      LEVINE I, MENZEL D, MUSIIENKO A, MACQUEEN R, ROMANO N, VASQUEZ-MONTOYA M, UNGER E, PEREZ C M, FORDE A, NEUKIRCH A J, KORTE L, DITTRICH T. Revisiting sub-band gap emission mechanism in 2D halide perovskites: The role of defect states[J]. J. Am. Chem. Soc., 2024,146(33):23437-23448. doi: 10.1021/jacs.4c06621

    49. [49]

      PARK D Y, AN S J, LEE C, NGUYEN D A, LEE K N, JEONG M S. Investigation of chemical origin of white-light emission in two- dimensional (C4H9NH3)PbBr4 via infrared nanoscopy[J]. J. Phys. Chem. Lett., 2019,10(24):7942-7948. doi: 10.1021/acs.jpclett.9b03328

    50. [50]

      LI X T, KE W J, TRAORé B, GUO P J, HADAR I, KEPENEKIAN M, EVEN J, KATAN C, STOUMPOS C C, SCHALLER R D, KANATZIDIS M G. Two-dimensional dion-jacobson hybrid lead iodide perovskites with aromatic diammonium cations[J]. J. Am. Chem. Soc., 2019,141(32):12880-12890. doi: 10.1021/jacs.9b06398

    51. [51]

      HOU A, FAN L B, XIONG Y, LIN J W, LIU K J, CHEN M Y, GUO Z N, ZHAO J, LIU Q L. Zero-dimensional halides with ns electron (Sb) activation to generate broad photoluminescence[J]. Inorg. Chem., 2023,62(31):12501-12509. doi: 10.1021/acs.inorgchem.3c01726

    52. [52]

      MORAD V, YAKUNIN S, BENIN B M, SHYNKARENKO Y, GROTEVENT M J, SHORUBALKO I, BOEHME S C, KOVALENKO M V. Hybrid 0D antimony halides as air-stable luminophores for high-spatial-resolution remote thermography[J]. Adv. Mater., 2021,33(9)2007355. doi: 10.1002/adma.202007355

    53. [53]

      YANG B, CHEN J S, YANG S Q, HONG F, SUN L, HAN P G, PULLERITS T, DENG W Q, HAN K L. Lead-free silver-bismuth halide double perovskite nanocrystals[J]. Angew. Chem. ‒Int. Edit., 2018,57(19):5359-5363. doi: 10.1002/anie.201800660

    54. [54]

      XU L J, SUN C Z, XIAO H, WU Y, CHEN Z N. Green-light-emitting diodes based on tetrabromide manganese(Ⅱ) complex through solution process[J]. Adv. Mater., 2017,29(10)1605739. doi: 10.1002/adma.201605739

    55. [55]

      JIANG T M, MA W B, ZHANG H, TIAN Y, LIN G, XIAO W G, YU X, QIU J B, XU X H, YANG Y, JU D X. Highly efficient and tunable emission of lead-free manganese halides toward white light-emitting diode and X-ray scintillation applications[J]. Adv. Funct. Mater., 2021,31(14)2009973. doi: 10.1002/adfm.202009973

    56. [56]

      WANG Q J, BAI T X, JI S J, ZHAO H Y, MENG X, ZHANG R L, JIANG J K, LIU F. Ultraviolet emission from cerium-based organic-inorganic hybrid halides and their abnormal anti-thermal quenching behavior[J]. Adv. Funct. Mater., 2023,33(34)2303399. doi: 10.1002/adfm.202303399

    57. [57]

      BAI T X, WANG Q J, BAI Y F, MENG Q C, ZHAO H Y, WEN Z Y, SUN H B, HUANG L, JIANG J K, HUANG D, LIU F, YU W W. From dopant to host: Solution synthesis and light-emitting applications of organic-inorganic lanthanide-based metal halides[J]. Small Struct., 2024,5(7)2400096. doi: 10.1002/sstr.202400096

    58. [58]

      JIN J, WANG Y Z, HAN K, XIA Z G. Rigid phase formation and Sb3+ doping of tin􀃯 halide hybrids toward photoluminescence enhancement and tuning for anti-counterfeiting and information encryption[J]. Angew. Chem. ‒Int. Edit., 2024,63(33)e202408653. doi: 10.1002/anie.202408653

    59. [59]

      CHEN X Y, LI M, GE L, LIU S Y, LV W Z, YU Y H, TANG Y, HAN C F, LI M G, TAO Y, XU L G, CHEN R F. Ultralong red room-temperature phosphorescence of 2D organic-inorganic metal halide perovskites for afterglow red LEDs and X-ray scintillation applications[J]. Inorg. Chem., 2023,62(40):16538-16546. doi: 10.1021/acs.inorgchem.3c02380

    60. [60]

      LIU Y L, WANG C, ZHOU C Y, LI P, ZHU L N, SUN S Q, FENG X, SUN Y, ZHAO G J. Mechanism for tunable broadband white photoluminescence of one-dimensional (C4N2H14)2Pb1-xMnxBr4 perovskite microcrystals[J]. J. Lumin., 2020,221117045. doi: 10.1016/j.jlumin.2020.117045

    61. [61]

      LIU S Y, CAI Y B, ZHAO W, LI W J, LI L B, XU L G, MIAO Z Z, CHEN R F, LV W Z. Efficient room-temperature phosphorescence in 2D perovskite via mixed organic cation incorporation[J]. J. Phys. Chem. Lett., 2024,15(35):9016-9023. doi: 10.1021/acs.jpclett.4c01848

    62. [62]

      HU H W, MEIER F, ZHAO D M, ABE Y, GAO Y, CHEN B B, SALIM T, CHIA E E M, QIAO X F, DEIBEL C, LAM Y M. Efficient room-temperature phosphorescence from organic-inorganic hybrid perovskites by molecular engineering[J]. Adv. Mater., 2018,30(36)e1707621. doi: 10.1002/adma.201707621

    63. [63]

      ZHOU B, YAN D P. Simultaneous long-persistent blue luminescence and high quantum yield within 2D organic-metal halide perovskite micro/nanosheets[J]. Angew. Chem. ‒Int. Edit., 2019,58(42):15128-15135. doi: 10.1002/anie.201909760

    64. [64]

      CHEN X Y, GE L, TANG Y, HAN C F, YU Y H, LIU S Y, LI M G, ZHANG P, XU L G, YIN J, LV W Z, CHEN R F. Achieving ultralong room-temperature phosphorescence in two-dimensional metal halide perovskites by alkyl chain engineering[J]. J. Phys. Chem. Lett., 2023,14(38):8638-8647. doi: 10.1021/acs.jpclett.3c01794

    65. [65]

      ZHOU J, LI M Z, MOLOKEEV M S, SUN J Y, XU D H, XIA Z G. Tunable photoluminescence in Sb-doped zero-dimensional hybrid metal halides with intrinsic and extrinsic self-trapped excitons[J]. J. Mater. Chem. C, 2020,8(15):5058-5063. doi: 10.1039/D0TC00391C

    66. [66]

      ZHOU C K, LEE S J, LIN H R, NEU J, CHAABAN M, XU L J, ARCIDIACONO A, HE Q Q, WORKU M, LEDBETTER L, LIN X S, SCHLUETER J A, SIEGRIST T, MA B W. Bulk assembly of multicomponent zero-dimensional metal halides with dual emission[J]. ACS Mater. Lett., 2020,2(4):376-380. doi: 10.1021/acsmaterialslett.0c00011

    67. [67]

      LI M Z, ZHOU J, ZHOU G J, MOLOKEEV M S, ZHAO J, MORAD V, KOVALENKO M V, XIA Z G. Hybrid metal halides with multiple photoluminescence centers[J]. Angew. Chem. ‒Int. Edit., 2019,58(51):18670-18675. doi: 10.1002/anie.201911419

    68. [68]

      LUO Z S, LIU Y J, LIU Y L, LI C, LI Y W, LI Q, WEI Y, ZHANG L M, XU B, CHANG X Y, QUAN Z W. Integrated afterglow and self-trapped exciton emissions in hybrid metal halides for anti‑ counterfeiting applications[J]. Adv. Mater., 2022,34(18)e2200607. doi: 10.1002/adma.202200607

    69. [69]

      ZHOU C K, TIAN Y, YUAN Z, LIN H R, CHEN B H, CLARK R, DILBECK T, ZHOU Y, HURLEY J, NEU J, BESARA T, SIEGRIST T, DJUROVICH P, MA B W. Highly efficient broadband yellow phosphor based on zero-dimensional tin mixed-halide perovskite[J]. ACS Appl. Mater. Interfaces, 2017,9(51):44579-44583. doi: 10.1021/acsami.7b12862

    70. [70]

      JIANG L L, WU L K, SUN H Y, YIN H Y, ZOU Q H, DENG J W, LI R F, YE H Y, LI J R. Antimony doping towards fast digital encryption and decryption and high-efficiency WLED in zero-dimensional hybrid indium chlorides[J]. Chem. Eng. J., 2024,494153060. doi: 10.1016/j.cej.2024.153060

    71. [71]

      WANG S Y, HAN X X, KOU T T, ZHOU Y Y, LIANG Y, WU Z X, HUANG J L, CHANG T, PENG C Y, WEI Q L, ZOU B S. Lead-free Mn-based red-emitting hybrid halide (CH6N3)MnCl4 toward high performance warm WLEDs[J]. J. Mater. Chem. C, 2021,9(14):4895-4902. doi: 10.1039/D1TC00632K

    72. [72]

      ZHOU G J, DING J L, JIANG X X, ZHANG J, MOLOKEEV M S, REN Q Q, ZHOU J, LI S L, ZHANG X M. Coordination units of Mn modulation toward tunable emission in zero-dimensional bromides for white light-emitting diodes[J]. J. Mater. Chem. C, 2022,10(6):2095-2102. doi: 10.1039/D1TC05680H

    73. [73]

      WEI J H, LIAO J F, ZHOU L, LUO J B, WANG X D, KUANG D B. Indium-antimony-halide single crystals for high-efficiency white-light emission and anti-counterfeiting[J]. Sci. Adv., 2021,7(34)eabg3989. doi: 10.1126/sciadv.abg3989

    74. [74]

      WEI Y, CHENG Z Y, LIN J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs[J]. Chem. Soc. Rev., 2019,48(1):310-350. doi: 10.1039/C8CS00740C

    75. [75]

      GANDINI M, VILLA I, BERETTA M, GOTTI C, IMRAN M, CARULLI F, FANTUZZI E, SASSI M, ZAFFALON M, BROFFERIO C, MANNA L, BEVERINA L, VEDDA A, FASOLI M, GIRONI L, BROVELLI S. Efficient, fast and reabsorption-free perovskite nanocrystal-based sensitized plastic scintillators[J]. Nat. Nanotechnol., 2020,15(6):462-468. doi: 10.1038/s41565-020-0683-8

    76. [76]

      FAN Q S, MA Y, XU H J, SONG Y P, LIU Y, LUO J H, SUN Z H. Near‑room‑temperature reversible switching of quadratic optical nonlinearities in a one‑dimensional perovskite‑like hybrid[J]. Microstructures, 2022,2(3)2022013.

    77. [77]

      CHEN Q S, WU J, OU X Y, HUANG B L, ALMUTLAQ J, ZHUMEKENOV A A, GUAN X W, HAN S Y, LIANG L L, YI Z G, LI J, XIE X J, WANG Y, LI Y, FAN D Y, TEH D B L, ALL A H, MOHAMMED O F, BAKR O M, WU T, BETTINELLI M, YANG H H, HUANG W, LIU X G. All-inorganic perovskite nanocrystal scintillators[J]. Nature, 2018,561(7721):88-93. doi: 10.1038/s41586-018-0451-1

    78. [78]

      SU B B, JIN J C, HAN K, XIA Z G. Ceramic wafer scintillation screen by utilizing near-unity blue-emitting lead-free metal halide (C8H20N)2Cu2Br4[J]. Adv. Funct. Mater., 2022,33(5)2210735.

    79. [79]

      YU Y H, LIU S Y, ZHANG J R, ZHAO W, TANG Y, HAN C F, CHEN X Y, XU L G, CHEN R F, LI M G, TAO Y, LV W Z. Mn(Ⅱ)-based metal halide with near-unity quantum yield for white LEDs and high-resolution X-ray imaging[J]. Inorg. Chem., 2024,63(22):10296-10303. doi: 10.1021/acs.inorgchem.4c00978

    80. [80]

      HE Q Q, ZHOU C K, XU L J, LEE S J, LIN X S, NEU J, WORKU M, CHAABAN M, MA B W. Highly stable organic antimony halide crystals for X-ray scintillation[J]. ACS Mater. Lett., 2020,2(6):633-638. doi: 10.1021/acsmaterialslett.0c00133

    81. [81]

      LIU L L, HU H J, PAN W T, GAO H, SONG J M, FENG X P, QU W, WEI W, YANG B, WEI H T. Robust organogel scintillator for self-healing and ultra-flexible X-ray imaging[J]. Adv. Mater., 2024,36(13)2311206. doi: 10.1002/adma.202311206

    82. [82]

      KAKAVELAKIS G, GAGAOUDAKIS E, PETRIDIS K, PETROMICHELAKI V, BINAS V, KIRIAKIDIS G, KYMAKIS E. Solution processed CH3NH3PbI3-xClx perovskite based self-powered ozone sensing element operated at room temperature[J]. ACS Sens., 2017,3(1):135-142.

    83. [83]

      ZHOU G J, WANG Y T, MAO Y L, GUO C H, ZHANG J, MOLOKEEV M S, XIA Z G, ZHANG X M. Temperature/component-dependent luminescence in lead-free hybrid metal halides for temperature sensor and anti-counterfeiting[J]. Adv. Funct. Mater., 2024,34(34)2401860. doi: 10.1002/adfm.202401860

    84. [84]

      GAO W R, LENG M Y, HU Z X, LI J Z, LI D H, LIU H, GAO L, NIU G D, TANG J. Reversible luminescent humidity chromism of organic‑inorganic hybrid PEA2MnBr4 single crystals[J]. Dalton Trans., 2020,49(17):5662-5668. doi: 10.1039/D0DT00514B

    85. [85]

      GUO K, LV W Z, WANG H, LI M G, XU L G, CHEN R F, XING G C, WU G B. Rational engineering of phase-pure 2D perovskite solar cells[J]. Adv. Funct. Mater., 2024,35(2)2412482.

    86. [86]

      ZHU X, ZHANG R Q, LI M, GAO X, ZHENG C, CHEN R F, XU L G, LV W Z. PEDOT: PSS/CuCl composite hole transporting layer for enhancing the performance of 2D Ruddlesden-Popper perovskite solar cells[J]. J. Phys. Chem. Lett., 2022,13(26):6101-6109. doi: 10.1021/acs.jpclett.2c01399

    87. [87]

      WU G B, ZHANG R Q, WANG H, MA K J, XIA J M, LV W Z, XING G C, CHEN R F. Rational strategies to improve the efficiency of 2D perovskite solar cells[J]. Adv. Mater., 2024,36(36)2405470. doi: 10.1002/adma.202405470

    88. [88]

      JIANG X Y, ZHOU Q L, LU Y, LIANG H, LI W Z, WEI Q, PAN M L, WEN X, WANG X Z, ZHOU W, YU D N, WANG H, YIN N, CHEN H, LI H S, PAN T, MA M Y, LIU G Q, ZHOU W J, SU Z H, CHEN Q, FAN F J, ZHENG F, GAO X Y, JI Q Q, NING Z J. Surface heterojunction based on n-type low-dimensional perovskite film for highly efficient perovskite tandem solar cells[J]. Natl. Sci. Rev., 2024,11(5)nwae055. doi: 10.1093/nsr/nwae055

    89. [89]

      KIM J, PARK J S, KIM G Y, JO W. Autonomous control of ion migration at α-FAPbI heterointerfaces via interfacial-self-assembled 2D perovskite[J]. Adv. Energy Mater., 2024,14(40)2402117. doi: 10.1002/aenm.202402117

    90. [90]

      MA C Q, SHEN D, HUANG B, LI X C, CHEN W C, LO M F, WANG P F, LAM M H W, LU Y, MA B W, LEE C S. High performance low-dimensional perovskite solar cells based on a one dimensional lead iodide perovskite[J]. J. Mater. Chem. A, 2019,7(15):8811-8817. doi: 10.1039/C9TA01859J

    91. [91]

      TANG Y J, SUN X N, ZHANG P K, TIAN B K, XU P, JIANG Y, ZHANG J P, YAN Z Y, ZHAO X M, ZHANG Z H, GUO W L. High-performance perovskite solar cells enabled by one-dimensional capping layer with conjugated ligands[J]. ACS Appl. Mater. Interfaces, 2025,17(9):14016-14024. doi: 10.1021/acsami.4c21423

    92. [92]

      WEI J H, OU W T, LUO J B, KUANG D B. Zero-dimensional Zn-based halides with ultra-long room-temperature phosphorescence for time-resolved anti-counterfeiting[J]. Angew. Chem. ‒Int. Edit., 2022,61(33)e202207985. doi: 10.1002/anie.202207985

    93. [93]

      XU Z, SHEN Y, CHEN Y, ZUO M K, HU F, DENG M C, WANG B, SUN H, HUANG W, WU D Y. Halide modulated room-temperature phosphorescence from one-dimensional metal-organic halides for time-resolved anti-counterfeiting[J]. J. Lumin., 2025,277120907. doi: 10.1016/j.jlumin.2024.120907

    94. [94]

      WANG Y A, WANG C, SUN M J, ZHAO P, FANG X X, ZHANG J R, GUO Y R, ZHAO G J. Room temperature phosphorescence in chiral 0D Zn(Ⅱ) metal halide crystals for multiple anti-counterfeiting[J]. Adv. Opt. Mater., 2024,12(5)2301843. doi: 10.1002/adom.202301843

    95. [95]

      LI W Z, MAO X, YIN H, WANG Y X, WANG Y F, CHEN J S, HAN K L, ZHANG R L. Guest-dependent stimuli-responsive photoluminescence in 0D antimony chlorides for anticounterfeiting and encryption applications[J]. Adv. Funct. Mater., 2025,35(2)2413049. doi: 10.1002/adfm.202413049

    96. [96]

      LI K J, ZHAO Y Y, SUN M E, CHEN G S, ZHANG C, LIU H L, LI H Y, ZANG S Q, MAK T C W. Zero-dimensional zinc halide organic hybrids with excellent optical waveguide properties[J]. Cryst. Growth Des., 2022,22(5):3295-3302. doi: 10.1021/acs.cgd.2c00117

    97. [97]

      YANG Y, ZHANG H F, HOU S M, WANG T, CHEN W Z, XIAN S Y, ZHANG Z L, MAO Y L. Sn-based quasi-two-dimensional organic-inorganic hybrid halide perovskite for high-performance photodetectors[J]. Appl. Phys. Lett., 2021,119(16)161106. doi: 10.1063/5.0068273

    98. [98]

      LIU Y Q, BU F, LIU W B, LI H B, LI R Z, WANG J P. Self-powered visible-blind ultraviolet photodetector based on organic-inorganic hybrid copper halide [N(C2H5)4]2[Cu2Br4][J]. J. Phys. Chem. Lett., 2024,15(26):6835-6840. doi: 10.1021/acs.jpclett.4c01403

    99. [99]

      YUE C Y, HU B, LEI X W, LI R Q, MI F Q, GAO H, LI Y, WU F, WANG C L, LIN N. Novel three-dimensional semiconducting materials based on hybrid d10 transition metal halogenides as visible light-driven photocatalysts[J]. Inorg. Chem., 2017,56(18):10962-10970. doi: 10.1021/acs.inorgchem.7b01171

    100. [100]

      LEI X W, YUE C Y, ZHAO J Q, HAN Y F, YANG J T, MENG R R, GAO C S, DING H, WANG C Y, CHEN W D. Low-dimensional hybrid cuprous halides directed by transition metal complex: Syntheses, crystal structures, and photocatalytic properties[J]. Cryst. Growth Des., 2015,15(11):5416-5426. doi: 10.1021/acs.cgd.5b01037

    101. [101]

      SEO J, MCGILLICUDDY R D, SLAVNEY A H, ZHANG S, UKANI R, YAKOVENKO A A, ZHENG S L, MASON J A. Colossal barocaloric effects with ultralow hysteresis in two-dimensional metal-halide perovskites[J]. Nat. Commun., 2022,13(1)2536. doi: 10.1038/s41467-022-29800-9

  • 加载中
    1. [1]

      Yuhang ZhangWeiwei ZhaoHongwei LiuJunpeng Lü . Progress on Self-Powered Photodetectors Based on Low-Dimensional Materials. Acta Physico-Chimica Sinica, 2025, 41(3): 100020-0. doi: 10.3866/PKU.WHXB202310004

    2. [2]

      Wenxu Liu Feng Han Boxuan Wang Huayi Liu Xiaobin Gu Xin Zhang Yao Liu . Comprehensive Chemical Experiment: Design, Synthesis, and Photoelectronic Properties Study of Fully Non-Fused Ring Electron Acceptors. University Chemistry, 2025, 40(10): 263-275. doi: 10.12461/PKU.DXHX202412021

    3. [3]

      Rongzhan LOUQiaoling KANGZhenchao BAIDongyun LIYang XURui WANGQingyi LU . Research progress of sodium ion high entropy layered oxide cathode. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2411-2428. doi: 10.11862/CJIC.20250142

    4. [4]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    5. [5]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    6. [6]

      Pengcheng YanPeng WangJing HuangZhao MoLi XuYun ChenYu ZhangZhichong QiHui XuHenan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-0. doi: 10.3866/PKU.WHXB202309047

    7. [7]

      Xiaogang YANGXinya ZHANGJing LIHuilin WANGMin LIXiaotian WEIXinci WULufang MA . Synthesis, structure, and photoelectric properties of Zinc(Ⅱ)-triphenylamine based metal-organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2078-2086. doi: 10.11862/CJIC.20250167

    8. [8]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    9. [9]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    10. [10]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    11. [11]

      Rui LiHuan LiuYinan JiaoShengjian QinJie MengJiayu SongRongrong YanHang SuHengbin ChenZixuan ShangJinjin Zhao . Emerging Irreversible and Reversible Ion Migrations in Perovskites. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-0. doi: 10.3866/PKU.WHXB202311011

    12. [12]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    13. [13]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046

    14. [14]

      Huasen LuShixu SongQisen JiaGuangbo LiuLuhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035

    15. [15]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    16. [16]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    17. [17]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    18. [18]

      Wenke ZHENGCe LIUWei CHENHongshan KEFanlong ZENGYibo LEIAnyang LIWenyuan WANG . Synthesis and bonding analysis of low-coordinate Fe and Cr complexes with ultra-bulky silylamino groups. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1285-1293. doi: 10.11862/CJIC.20250095

    19. [19]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    20. [20]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

Metrics
  • PDF Downloads(48)
  • Abstract views(903)
  • HTML views(116)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return