Citation: Ruixin XU, Hongtuo LI, Chen SHI, Yanhong YAN. Factors influencing the spectral properties of composite luminescent materials SrTiO3: Eu3+/SrAl2O4: Eu2+, Dy3+[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(11): 2307-2316. doi: 10.11862/CJIC.20250055 shu

Factors influencing the spectral properties of composite luminescent materials SrTiO3: Eu3+/SrAl2O4: Eu2+, Dy3+

Figures(12)

  • TiO2 was incorporated into the preparation process of the rare-earth long-afterglow luminescent material SrAl2O4: Eu2+, Dy3+, yielding the SrTiO3: Eu3+/SrAl2O4: Eu2+, Dy3+ composite luminescent material co-doped with Eu3+ and Eu2+. The effects of raw material ratios on the material's micromorphology, phase composition, and luminescent properties were investigated. The results indicated that the composite material exhibited an irregular morphology, a porous structure, and agglomeration. With the increase of TiO2 addition amount, the luminescent brightness and afterglow duration of the material were significantly improved. When the TiO2 addition amount was 1 mol, the material showed the optimal red emission at 618 nm, with a brightness of 0.217 cd·m-2 and an afterglow duration of 1 000 s. Doping with Eu2O3 made the luminescent properties first enhance and then tend to stabilize: the emission intensity reached the maximum when the amount of Eu2O3 was 0.015 0 mol, while the afterglow performance was optimal when the amount of Eu2O3 was 0.012 5 mol. The introduction of carbon powder obviously enhanced the emission intensity at 618 nm, with the optimal condition at the amount of 0.001 25 mol, and the afterglow brightness reached 0.011 cd·m-2.
  • 加载中
    1. [1]

      ZHU Y F, GE M Q, CHEN Z. Preparation and properties of rare earth luminous fiber containing red organic fluorescent pigment[J]. J. Rare Earths, 2013,31(11):1043-1048. doi: 10.1016/S1002-0721(12)60400-1

    2. [2]

      LU B H, WEI X, ZHU Y N, GE M Q. Research and development on light color property of rare earth luminous fiber[J]. New Chemical Materials, 2021,49(12):210-214.

    3. [3]

      YAN Y H, WANG L L, GU B F. Equivalent luminance of children nocturnal safety garments[J]. Journal of Textile Research, 2019,40(8):136-140.

    4. [4]

      ZHANG J S, GE M Q. Anti-counterfeiting characteristics of spectrum-fingerprint fiber[J]. Journal of Textile Institute, 2013,34(4):12-16.

    5. [5]

      GUO X F, GE M Q. The afterglow and thermoluminescence characteristics of rare-earth aluminate strontium luminous PET fiber with different color[J]. Mater. Rep., 2012,26(18):14-17.

    6. [6]

      ZHU Y N, ZHENG L B, GE M Q. Study on the properties of complex red luminescent fibers: Sr2MgSi2O7∶Eu2+, Dy3+/light conversion agents-polyacrylonitrile[J]. J. Ind. Text., 2022,51(5S):8196S-8207S.

    7. [7]

      GUO X F, ZHANG K Q, GE M Q. The luminous mechanism of Eu2+ and Dy3+ co-doped long persistent luminous fiber[J]. Text. Res. J., 2019,89(17):3601-3609. doi: 10.1177/0040517518817056

    8. [8]

      GE M Q, GUO X F, YAN Y H. Preparation and study on the structure and properties of rare-earth luminescent fiber[J]. Text. Res. J., 2012,82(7):677-684. doi: 10.1177/0040517511429606

    9. [9]

      ZHAO C Y, WANG T, ZHANG D Q, TAO Y F, DAO K, HE Z Z, ZHU Y N, CHEN Z J. Preparation and characterization of red light luminous material: Sr2MgSi2O7∶Eu2+, Dy3+/light conversion agent[J]. Chinese Rare Earths, 2019,40(4):53-59.

    10. [10]

      CHEN Z, LUO J, GE M Q. Fabrication and characterization of Sr2MgSi2O7∶Eu2+, Dy3+ luminescent nanofibres[J]. Chinese Rare Earths, 2015,36(5):37-42.

    11. [11]

      EBRAHIMZADE A, MOJTAHEDI M R M, RAHBAR R S. Study on characteristics and afterglow properties of luminous polypropylene/ rare earth strontium aluminate fiber[J]. J. Mater. Sci. Mater. Electron., 2017,28(11):8167-8176. doi: 10.1007/s10854-017-6525-2

    12. [12]

      LU B H, RAO Z H, SHI M Y, PANG Z Y, ZHU Y N. Preparation and properties of rare earth noctilucent fibers with multiple photo-chromic colors[J]. Chem. Ind. Eng. Prog., 2021,40(11):6254-6261.

    13. [13]

      CHEN Z, ZHU Y N, GUO X F, LI M J, GE M Q. Comparison of the luminescent properties of warm-toned long-lasting phosphorescent composites: SiO2/red-emitting color converter@SrAl2O4∶Eu2+, Dy3+ and PMMA/red-emitting color converter@SSrAl2O4∶Eu2+, Dy3+[J]. J. Lumin., 2018,199:1-5. doi: 10.1016/j.jlumin.2018.03.010

    14. [14]

      XUE H L, ZHU Y N, GE M Q. Preparation and characterization of light converter/Sr4Al14O25 red phosphor[J]. New Chemical Materials, 2018,46(4):111-114.

    15. [15]

      FAN G D, XIAO G P. Preparation and characterization of long-lasting phosphorescence SSrAl2O4∶Eu2+, Dy3+, Pr3+ nanoparticles[J]. J. Chin. Ceram. Soc., 2011,39(2):199-203.

    16. [16]

      ZHU C X, XU H, YANG Y M, PAN C Q, LIANG W. In-situ reduction preparation and properties of SSrAl2O4∶Eu2+, Dy3+ long-lasting phosphor materials[J]. Bulletin of the Chinese Ceramic Society, 2017,36(11):3648-3652.

    17. [17]

      ZHANG J L, WU Y M, XING M Y, LEGHARI S A K, SAJJAD S M. Development of modified N-doped TiO2 photocatalyst with metals, nonmetals and metal oxides[J]. Energy Environ. Sci., 2010,3(6):715-726. doi: 10.1039/b927575d

    18. [18]

      DAWNGLIANA K M S, FANAI A L, RAI S. Structural and spectroscopic properties of Eu3+-doped SiO2-TiO2 nanoparticles for photonic applications[J]. Opt. Mater., 2024,152115470. doi: 10.1016/j.optmat.2024.115470

    19. [19]

      MAAOUNI N, ROSAIAH P K, KUMAR K G, DHANALAKSHMI M A, ALBAQAMI M D, AYUB R. Enhanced DSSC efficiency through integration of red-emitting MgAl2O4∶Eu3+ phosphor within TiO2 layer[J]. Opt. Mater., 2024,151115349. doi: 10.1016/j.optmat.2024.115349

    20. [20]

      WU J Z, LIU Y N, KOZLOWSKI M C. Visible-light TiO2-catalyzed synthesis of dihydrobenzofurans by oxidative[3+2] annulation of phenols with alkenyl phenols[J]. Chem. Sci., 2024,15(19):7150-7159. doi: 10.1039/D4SC00723A

    21. [21]

      OGUZLAR S, ONGUN M Z, KESKIN O Y, DELICE T K, AZEM F A, BIRLIK I, ERTEKIN K. Investigation of spectral interactions between a SrAl2O4∶Eu2+, Dy3+ phosphor and nano-scale TiO2[J]. J. Fluoresc., 2020,30(4):839-847. doi: 10.1007/s10895-020-02555-6

    22. [22]

      HU C K, PENG B, SONG K X, LIU B, WANG D W, REANEY I M. The cyan-green luminescent behaviour of nitrided Ba9Y2Si6O24∶Eu2+ phosphors for W-LED[J]. Ceram. Int., 2018,44:52-56.

    23. [23]

      GENG J, WU Z P, CHEN W, LUO L. Properties of long afterglow SrAl2O4∶Eu2+, Dy3+ phosphor[J]. J. Inorg. Mater., 2003,18(2):480-484.

    24. [24]

      OUYANG J L, CHANG M L, LI X J. CdS-sensitized ZnO nanorod arrays coated with TiO2 layer for visible light photoelectrocatalysis[J]. J. Mater. Sci., 2012,47(9):4187-4193. doi: 10.1007/s10853-012-6273-x

    25. [25]

      SHIN H, ULLAH S, CHUNG K. Effect of nominal substitution of Dy3+ for host cations in SSrAl2O4∶Eu2+ phosphor on phase evolution and long afterglow luminescence[J]. J. Alloy. Compd., 2012,544:181-187. doi: 10.1016/j.jallcom.2012.07.087

    26. [26]

      BHAGYA N P, PRASHANTH P A, KRISHNA R H, NAGABHUSHANA B, RAVEENDRA R. Photoluminescence studies of Eu3+-activated SrTiO 3 nanophosphor prepared by solution combustion approach[J]. Optik, 2017,145:678-687. doi: 10.1016/j.ijleo.2017.07.003

    27. [27]

      YE S S, LIN H B, ZHANG Q F, SU Y J, TANG X, DENG W, XIONG D K. The enhancing luminescence of B2O3-doped SSrAl2O4∶ Eu2+, Dy3+ single crystals[J]. J. Lumin., 2025,277120920. doi: 10.1016/j.jlumin.2024.120920

    28. [28]

      WANG Y Q, MA W Q, SONG Y X, CHEN J J, XU J, WANG D J, MAO Z Y. Enhanced photocatalytic performance of SrTiO3 powder induced by europium dopants[J]. J. Rare Earths, 2021,39(5):541-547. doi: 10.1016/j.jre.2020.07.002

  • 加载中
    1. [1]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    2. [2]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    3. [3]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    4. [4]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    5. [5]

      Xian BISisi WANGJinyue ZHANGYujia PENGZhen SHENHua LU . Discovery, development, and perspectives of circularly polarized luminescent materials based on β-isoindigo skeletons. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1049-1057. doi: 10.11862/CJIC.20240456

    6. [6]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    7. [7]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    8. [8]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    9. [9]

      Ruoqian Zhang Chaoqun Mu Yali Hou Mingming Zhang . 四苯乙烯基多组分金属有机笼的构筑及其固态发光性能研究. University Chemistry, 2025, 40(8): 277-283. doi: 10.12461/PKU.DXHX202410027

    10. [10]

      Tong WANGXuefang ZHUQi GAOHongbo ZHANGChao RENLixia GE . Luminescence and thermal stability of Tb3+-Eu3+ doped glass-ceramics containing Na8.12Y1.293Si6O18 crystal phase. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2237-2250. doi: 10.11862/CJIC.20250137

    11. [11]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    12. [12]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    13. [13]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    14. [14]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    15. [15]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    16. [16]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    17. [17]

      Borong Yu Huijiao Zhang Xinyu Zhang Xiaoying Li Shuming Chen Zhangang Han . The Blue Elf in the Dark: Gradient Science Popularization Experiments on Chemiluminescence. University Chemistry, 2024, 39(9): 295-303. doi: 10.12461/PKU.DXHX202403107

    18. [18]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    19. [19]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    20. [20]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

Metrics
  • PDF Downloads(0)
  • Abstract views(357)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return