NiOOH-mediated synthesis of gold nanoaggregates for electrocatalytic performance for selective oxidation of glycerol to glycolate
- Corresponding author: Ruixiang LI, liruixiang@scu.edu.cn
Citation:
Dingwen CHEN, Siheng YANG, Haiyan FU, Hua CHEN, Xueli ZHENG, Weichao XUE, Jiaqi XU, Ruixiang LI. NiOOH-mediated synthesis of gold nanoaggregates for electrocatalytic performance for selective oxidation of glycerol to glycolate[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(11): 2317-2326.
doi:
10.11862/CJIC.20250053
VARGAS K S, ZAFFRAN J, ARAQUE M, SADAKANE M, KATRYNIOK B. Deoxydehydration of glycerol to allyl alcohol catalysed by ceria-supported rhenium oxide[J]. Mol. Catal., 2023,535112856.
HU X Y, LU J, LIU Y, CHEN L, ZHANG X W, WANG H T. Sustainable catalytic oxidation of glycerol: A review[J]. Environ. Chem. Lett., 2023,21(5):2825-2861. doi: 10.1007/s10311-023-01608-z
DODEKATOS G, SCHüNEMANN S, TüYSüZ H. Recent advances in thermo-, photo-, and electrocatalytic glycerol oxidation[J]. ACS Catal., 2018,8(7):6301-6333. doi: 10.1021/acscatal.8b01317
DEMIRBAŞ A. Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: A survey[J]. Energy Convers. Manage., 2003,44(13):2093-2109. doi: 10.1016/S0196-8904(02)00234-0
XIE Y N, SUN L Z, PAN X, ZHOU Z Y, ZHENG Y C, YANG X F, ZHAO G H. Carbon paper supported gold nanoflowers for tunable glycerol electrooxidation boosting efficient hydrogen evolution[J]. Carbon, 2023,203:88-96. doi: 10.1016/j.carbon.2022.11.067
LIU C, HIROHARA M, MAEKAWA T, CHANG R, HAYASHI T, CHIANG C Y. Selective electro-oxidation of glycerol to dihydroxyacetone by a non-precious electrocatalyst-CuO[J]. Appl. Catal. B‒ Environ. Energy., 2020,265118543. doi: 10.1016/j.apcatb.2019.118543
TRAN G S, CHEN C J, MAEDA S, CHIKAMI S, HAYASHI T, CHIANG C Y. Tuning selectivity toward three-carbon product of glycerol electrooxidation in borate buffer through manipulating borate/glycerol molar ratio[J]. J. Catal., 2024,438115715. doi: 10.1016/j.jcat.2024.115715
YAN Y F, WANG Q Y, YANG J R, FU Y, SHI Q W, LI Z H, ZHANG J L, SHAO M F, DUAN X. Selective electrooxidation of crude glycerol to lactic acid coupled with hydrogen production at industrially‐relevant current density[J]. Small, 2025,21(13)2406782. doi: 10.1002/smll.202406782
LUO H, YUKUHIRO V Y, FERNáNDEZ P S, FENG J, THOMPSON P, RAO R R, CAI R, FAVERO S, HAIGH S J, DURRANT J R, STEPHENS I E L, TITIRICI M M. Role of Ni in PtNi bimetallic electrocatalysts for hydrogen and value-added chemicals coproduction via glycerol electrooxidation[J]. ACS Catal., 2022,12(23):14492-14506. doi: 10.1021/acscatal.2c03907
LU H L, LIU M, BAIYIN M H. Electrooxidation of glycerol to formic acid coupled with energy-saving hydrogen production over ruthenium doped cobalt-based nanosheet arrays[J]. Chem. Eng. J., 2024,499155923. doi: 10.1016/j.cej.2024.155923
ZHANG Z Y, XIN L, QI J, WANG Z C, LI W Z. Selective electro-conversion of glycerol to glycolate on carbon nanotube supported gold catalyst[J]. Green Chem., 2012,14(8):2150-2152. doi: 10.1039/c2gc35505a
SHAWE S, BUCHANAN F, HARKIN-JONES E, FARRAR D. A study on the rate of degradation of the bioabsorbable polymer polyglycolic acid (PGA)[J]. J. Mater. Sci., 2006,41(15):4832-4838. doi: 10.1007/s10853-006-0064-1
SANKAR M, DIMITRATOS N, KNIGHT D W, CARLEY A F, TIRUVALAM R, KIELY C J, THOMAS D, HUTCHINGS G J. Oxidation of glycerol to glycolate by using supported gold and palladium nanoparticles[J]. ChemSusChem, 2009,2(12):1145-1151. doi: 10.1002/cssc.200900133
PANOVA A, MERSINGER L J, LIU Q, FOO T, ROE D C, SPILLAN W L, SIGMUND A E, BEN-BASSAT A, WAGNER L W, O′KEEFE D P, WU S, PETRILLO K L, PAYNE M S, BRESKE S T, GALLAGHER F G, DICOSIMO R. Chemoenzymatic synthesis of glycolic acid[J]. Adv. Synth. Catal., 2007,349:1462-1474. doi: 10.1002/adsc.200700061
SALUSJÄRVI L, HAVUKAINEN S, KOIVISTOINEN O, TOIVARI M. Biotechnological production of glycolic acid and ethylene glycol: Current state and perspectives[J]. Appl. Microbiol. Biotechnol., 2019,103(6):2525-2535. doi: 10.1007/s00253-019-09640-2
BI J H, ZHU Q G, GUO W W, LI P S, JIA S Q, LIU J Y, MA J, ZHANG J L, LIU Z M, HAN B X. Simultaneous CO2 reduction and 5-hydroxymethylfurfural oxidation to value-added products by electrocatalysis[J]. ACS Sustain. Chem. Eng., 2022,10(24):8043-8050. doi: 10.1021/acssuschemeng.2c02117
WANG Y, ZHU Y Q, XIE Z H, XU S M, XU M, LI Z Z, MA L N, GE R X, ZHOU H, LI Z H, KONG X G, ZHENG L R, ZHOU J H, DUAN H H. Efficient electrocatalytic oxidation of glycerol via promoted OH* generation over single-atom-bismuth-doped spinel Co3O4[J]. ACS Catal., 2022,12(19):12432-12443. doi: 10.1021/acscatal.2c03162
KATRYNIOK B, KIMURA H, SKRZYŃSKA E, GIRARDON J S, FONGARLAND P, CAPRON M, DUCOULOMBIER R, MIMURA N, PAUL S, DUMEIGNIL F. Selective catalytic oxidation of glycerol: Perspectives for high value chemicals[J]. Green Chem., 2011,13(8):1960-1979. doi: 10.1039/c1gc15320j
WU J X, LI J L, LI Y F, MA X Y, ZHANG W Y, HAO Y M, CAI W B, LIU Z P, GONG M. Steering the glycerol electro-reforming selectivity via cation-intermediate interactions[J]. Angew. Chem. ‒Int. Edit., 2022,61(11)e202113362. doi: 10.1002/anie.202113362
ZHENG Y Z, KANG Z H, LI H T, SONG X F, ZHANG W Q, WANG G C, TAO X. Hierarchically structured CuNiP/CuOx-VP nanoarrays construction by heteroatom doping boosting glycerol valorization at industrial-level current density[J]. Adv. Funct. Mater., 2025,35(2)2412810. doi: 10.1002/adfm.202412810
YAN Y F, ZHOU H, XU S M, YANG J R, HAO P J, CAI X, REN Y, XU M, KONG X G, SHAO M F, LI Z H, DUAN H H. Electrocatalytic upcycling of biomass and plastic wastes to biodegradable polymer monomers and hydrogen fuel at high current densities[J]. J. Am. Chem. Soc., 2023,145(11):6144-6155. doi: 10.1021/jacs.2c11861
CHEN W, ZHANG L, XU L T, HE Y Q, PANG H, WANG S Y, ZOU Y Q. Pulse potential mediated selectivity for the electrocatalytic oxidation of glycerol to glyceric acid[J]. Nat. Commun., 2024,15(1):2420-2431. doi: 10.1038/s41467-024-46752-4
KIM D, OH L S, TAN Y C, SONG H, KIM H J, OH J. Enhancing glycerol conversion and selectivity toward glycolic acid via precise nanostructuring of electrocatalysts[J]. ACS Catal., 2021,11(24):14926-14931. doi: 10.1021/acscatal.1c04581
SHEN L Q, SUN L Y, DOUTHWAITE M, AKDIM O, TAYLOR S, HUTCHINGS G J. Hollow Au1Cu1(111) bimetallic catalyst promotes the selective electrochemical conversion of glycerol into glycolic acid[J]. ACS Catal., 2024,14(15):11343-11351. doi: 10.1021/acscatal.4c00483
GARCIA A C, TOUZALIN T, NIEUWLAND C, PERINI N, KOPER M T M. Enhancement of oxygen evolution activity of nickel oxyhydroxide by electrolyte Alkali cations[J]. Angew. Chem. ‒Int. Edit., 2019,58(37):12999-13003. doi: 10.1002/anie.201905501
CHENG Y, ZHANG L F, WANG S, WANG M F, DENG C W, SUN Y, YAN C L, QIAN T. 2 A·cm-2 level large-scale production of hydrogen enabled by constructing higher capacity of interface "electron pocket"[J]. ACS Nano, 2023,17(16):15504-15515. doi: 10.1021/acsnano.3c01720
CHEN T Y, WU Q K, LI F, ZHONG R, CHEN Z. Co2P-Ni3S2 heterostructured nanocrystals as catalysts for urea electrooxidation and urea-assisted water splitting[J]. ACS Appl. Nano Mater., 2023,6(19):18364-18371. doi: 10.1021/acsanm.3c03617
WEI M, LI M L, GAO Q Z, CAI X, ZHANG S S, FANG Y P, PENG F, YANG S Y. Bifunctional Ni foam supported TiO2@Ni3S2 core@shell nanorod arrays for boosting electrocatalytic biomass upgrading and H2 production reactions[J]. Small, 2023,20(9)2305906.
BU Y G, WANG C, ZHANG W K, YANG X H, DING J, GAO G D. Electrical pulse-driven periodic self-repair of Cu-Ni tandem catalyst for efficient ammonia synthesis from nitrate[J]. Angew. Chem. ‒Int. Edit., 2023,62(24)e202217337. doi: 10.1002/anie.202217337
WANG H B, THIA L, LI N, GE X M, LIU Z L, WANG X. Selective electro-oxidation of glycerol over Au supported on extended poly(4-vinylpyridine) functionalized graphene[J]. Appl. Catal. B‒Environ. Energy, 2015,166/167:25-31. doi: 10.1016/j.apcatb.2014.11.009
GARCIA A C, KOLB M J, SANCHEZ C V Y, VOS J, BIRDJA Y Y, KWON Y, TREMILIOSI-FILHO G, KOPER M T M. Strong impact of platinum surface structure on primary and secondary alcohol oxidation during electro-oxidation of glycerol[J]. ACS Catal., 2016,6(7):4491-4500. doi: 10.1021/acscatal.6b00709
VALTER M, DOS SANTOS E C, PETTERSSON L G M, HELLMAN A. Partial electrooxidation of glycerol on close-packed transition metal surfaces: Insights from first-principles calculations[J]. J. Phys. Chem. C, 2020,124(33):17907-17915. doi: 10.1021/acs.jpcc.0c04002
VALTER M, BUSCH M, WICKMAN B, GRÖNBECK H, BALTRUSAITIS J, HELLMAN A. Electrooxidation of glycerol on gold in acidic medium: A combined experimental and DFT study[J]. J. Phys. Chem. C, 2018,122(19):10489-10494. doi: 10.1021/acs.jpcc.8b02685
XU J Q, YANG S H, JI L, MAO J W, ZHANG W, ZHENG X L, FU H Y, YUAN M L, YANG C K, CHEN H, LI R X. High current CO2 reduction realized by edge/defect-rich bismuth nanosheets[J]. Nano Res., 2023,16(1):53-61. doi: 10.1007/s12274-022-4770-z
XU J Q, LI X D, LIU W, SUN Y F, JU Z Y, YAO T, WANG C M, JU H X, ZHU J F, WEI S Q, XIE Y. Carbon dioxide electroreduction into syngas boosted by a partially delocalized charge in molybdenum sulfide selenide alloy monolayers[J]. Angew. Chem. ‒Int. Edit., 2017,56(31):9121-9125. doi: 10.1002/anie.201704928
DONG L, CHANG G R, FENG Y, YAO X Z, YU X Y. Regulating Ni site in NiV LDH for efficient electrocatalytic production of formate and hydrogen by glycerol electrolysis[J]. Rare Met., 2022,41(5):1583-1594. doi: 10.1007/s12598-021-01881-3
PEI Y H, PI Z F, ZHONG H, CHENG J, JIN F M. Glycerol oxidation-assisted electrochemical CO2 reduction for the dual production of formate[J]. J. Mater. Chem. A, 2022,10(3):1309-1319. doi: 10.1039/D1TA07119J
Xinlong XU , Chunxue JING , Yuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046
Ye Wang , Ruixiang Ge , Xiang Liu , Jing Li , Haohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019
Xin Feng , Kexin Guo , Chunguang Jia , Bowen Liu , Suqin Ci , Junxiang Chen , Zhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050
Xueting Cao , Shuangshuang Cha , Ming Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041
Yanhui Guo , Li Wei , Zhonglin Wen , Chaorong Qi , Huanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004
Anqun LAI , Qiaoyu WU , Qingqing LIANG , Qiyong LI , Guowen DONG , Yongjie DING , Jia′nan CHEN , Qing YAN , Zhonghua PAN , Wangchuan XIAO . Electrocatalytic water oxidation properties of Nd-Co polynuclear complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2527-2535. doi: 10.11862/CJIC.20250151
Xiting Zhou , Zhipeng Han , Xinlei Zhang , Shixuan Zhu , Cheng Che , Liang Xu , Zhenyu Sun , Leiduan Hao , Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
Lu Zhuoran , Li Shengkai , Lu Yuxuan , Wang Shuangyin , Zou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003
Qing Li , Guangxun Zhang , Yuxia Xu , Yangyang Sun , Huan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045
Wentao Xu , Xuyan Mo , Yang Zhou , Zuxian Weng , Kunling Mo , Yanhua Wu , Xinlin Jiang , Dan Li , Tangqi Lan , Huan Wen , Fuqin Zheng , Youjun Fan , Wei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003
Tao Wang , Qin Dong , Cunpu Li , Zidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
Jianchun Wang , Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082
Xinyi Zhang , Kai Ren , Yanning Liu , Zhenyi Gu , Zhixiong Huang , Shuohang Zheng , Xiaotong Wang , Jinzhi Guo , Igor V. Zatovsky , Junming Cao , Xinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 100024-0. doi: 10.3866/PKU.WHXB202404012
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
The particles within the dashed squares represent small Au nanoparticles, while those within the dashed circles indicate Au nanoaggregates in D-F.
Inset: partial enlarged view of the current density-time relationship diagram during the PE process.