Citation: Dingwen CHEN, Siheng YANG, Haiyan FU, Hua CHEN, Xueli ZHENG, Weichao XUE, Jiaqi XU, Ruixiang LI. NiOOH-mediated synthesis of gold nanoaggregates for electrocatalytic performance for selective oxidation of glycerol to glycolate[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(11): 2317-2326. doi: 10.11862/CJIC.20250053 shu

NiOOH-mediated synthesis of gold nanoaggregates for electrocatalytic performance for selective oxidation of glycerol to glycolate

  • Corresponding author: Ruixiang LI, liruixiang@scu.edu.cn
  • Received Date: 19 February 2025
    Revised Date: 9 July 2025

Figures(6)

  • In this study, a nickel foam (NF) was treated by cyclic voltammetry (CV) to obtain nickel oxyhydroxide (NiOOH), which was used as the precursor to construct a gold nanoaggregate/foam nickel composite catalyst (Au/RF100-NF, RF represents the surface roughness of NF after CV treatment). The formation of the NiOOH precursors and Au nanoaggregates synergistically enhances the electrochemical active surface area (ECSA) of the Au/RF100-NF while significantly improving the interfacial charge transfer kinetics, thereby contributing to the boosted glycerol oxidation reaction (GOR) performance. Moreover, the formation of Au nanoaggregates promotes the C—C cleavages during GOR, significantly reducing the Faraday efficiency (FE) for lactate (C3 product) and markedly increasing the FE for C2 and C1 products, such as glycolate and formate, over the Au/RF100-NF catalyst. Finally, pulse electrolysis conditions were applied to inhibit the further conversion of glycolate toward formate. As a result, the Au/RF100-NF catalyst achieved highly selectivity to glycolate with a FE up to ca. 49.1%, which was 1.67 times higher than that of the Au/NF catalyst, where Au nanoparticles were directly deposited onto the NF without the formation of NiOOH.
  • 加载中
    1. [1]

      VARGAS K S, ZAFFRAN J, ARAQUE M, SADAKANE M, KATRYNIOK B. Deoxydehydration of glycerol to allyl alcohol catalysed by ceria-supported rhenium oxide[J]. Mol. Catal., 2023,535112856.

    2. [2]

      HU X Y, LU J, LIU Y, CHEN L, ZHANG X W, WANG H T. Sustainable catalytic oxidation of glycerol: A review[J]. Environ. Chem. Lett., 2023,21(5):2825-2861. doi: 10.1007/s10311-023-01608-z

    3. [3]

      DODEKATOS G, SCHüNEMANN S, TüYSüZ H. Recent advances in thermo-, photo-, and electrocatalytic glycerol oxidation[J]. ACS Catal., 2018,8(7):6301-6333. doi: 10.1021/acscatal.8b01317

    4. [4]

      DEMIRBAŞ A. Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: A survey[J]. Energy Convers. Manage., 2003,44(13):2093-2109. doi: 10.1016/S0196-8904(02)00234-0

    5. [5]

      XIE Y N, SUN L Z, PAN X, ZHOU Z Y, ZHENG Y C, YANG X F, ZHAO G H. Carbon paper supported gold nanoflowers for tunable glycerol electrooxidation boosting efficient hydrogen evolution[J]. Carbon, 2023,203:88-96. doi: 10.1016/j.carbon.2022.11.067

    6. [6]

      LIU C, HIROHARA M, MAEKAWA T, CHANG R, HAYASHI T, CHIANG C Y. Selective electro-oxidation of glycerol to dihydroxyacetone by a non-precious electrocatalyst-CuO[J]. Appl. Catal. B‒ Environ. Energy., 2020,265118543. doi: 10.1016/j.apcatb.2019.118543

    7. [7]

      TRAN G S, CHEN C J, MAEDA S, CHIKAMI S, HAYASHI T, CHIANG C Y. Tuning selectivity toward three-carbon product of glycerol electrooxidation in borate buffer through manipulating borate/glycerol molar ratio[J]. J. Catal., 2024,438115715. doi: 10.1016/j.jcat.2024.115715

    8. [8]

      YAN Y F, WANG Q Y, YANG J R, FU Y, SHI Q W, LI Z H, ZHANG J L, SHAO M F, DUAN X. Selective electrooxidation of crude glycerol to lactic acid coupled with hydrogen production at industrially‐relevant current density[J]. Small, 2025,21(13)2406782. doi: 10.1002/smll.202406782

    9. [9]

      LUO H, YUKUHIRO V Y, FERNáNDEZ P S, FENG J, THOMPSON P, RAO R R, CAI R, FAVERO S, HAIGH S J, DURRANT J R, STEPHENS I E L, TITIRICI M M. Role of Ni in PtNi bimetallic electrocatalysts for hydrogen and value-added chemicals coproduction via glycerol electrooxidation[J]. ACS Catal., 2022,12(23):14492-14506. doi: 10.1021/acscatal.2c03907

    10. [10]

      LU H L, LIU M, BAIYIN M H. Electrooxidation of glycerol to formic acid coupled with energy-saving hydrogen production over ruthenium doped cobalt-based nanosheet arrays[J]. Chem. Eng. J., 2024,499155923. doi: 10.1016/j.cej.2024.155923

    11. [11]

      ZHANG Z Y, XIN L, QI J, WANG Z C, LI W Z. Selective electro-conversion of glycerol to glycolate on carbon nanotube supported gold catalyst[J]. Green Chem., 2012,14(8):2150-2152. doi: 10.1039/c2gc35505a

    12. [12]

      SHAWE S, BUCHANAN F, HARKIN-JONES E, FARRAR D. A study on the rate of degradation of the bioabsorbable polymer polyglycolic acid (PGA)[J]. J. Mater. Sci., 2006,41(15):4832-4838. doi: 10.1007/s10853-006-0064-1

    13. [13]

      SANKAR M, DIMITRATOS N, KNIGHT D W, CARLEY A F, TIRUVALAM R, KIELY C J, THOMAS D, HUTCHINGS G J. Oxidation of glycerol to glycolate by using supported gold and palladium nanoparticles[J]. ChemSusChem, 2009,2(12):1145-1151. doi: 10.1002/cssc.200900133

    14. [14]

      PANOVA A, MERSINGER L J, LIU Q, FOO T, ROE D C, SPILLAN W L, SIGMUND A E, BEN-BASSAT A, WAGNER L W, O′KEEFE D P, WU S, PETRILLO K L, PAYNE M S, BRESKE S T, GALLAGHER F G, DICOSIMO R. Chemoenzymatic synthesis of glycolic acid[J]. Adv. Synth. Catal., 2007,349:1462-1474. doi: 10.1002/adsc.200700061

    15. [15]

      SALUSJÄRVI L, HAVUKAINEN S, KOIVISTOINEN O, TOIVARI M. Biotechnological production of glycolic acid and ethylene glycol: Current state and perspectives[J]. Appl. Microbiol. Biotechnol., 2019,103(6):2525-2535. doi: 10.1007/s00253-019-09640-2

    16. [16]

      BI J H, ZHU Q G, GUO W W, LI P S, JIA S Q, LIU J Y, MA J, ZHANG J L, LIU Z M, HAN B X. Simultaneous CO2 reduction and 5-hydroxymethylfurfural oxidation to value-added products by electrocatalysis[J]. ACS Sustain. Chem. Eng., 2022,10(24):8043-8050. doi: 10.1021/acssuschemeng.2c02117

    17. [17]

      WANG Y, ZHU Y Q, XIE Z H, XU S M, XU M, LI Z Z, MA L N, GE R X, ZHOU H, LI Z H, KONG X G, ZHENG L R, ZHOU J H, DUAN H H. Efficient electrocatalytic oxidation of glycerol via promoted OH* generation over single-atom-bismuth-doped spinel Co3O4[J]. ACS Catal., 2022,12(19):12432-12443. doi: 10.1021/acscatal.2c03162

    18. [18]

      KATRYNIOK B, KIMURA H, SKRZYŃSKA E, GIRARDON J S, FONGARLAND P, CAPRON M, DUCOULOMBIER R, MIMURA N, PAUL S, DUMEIGNIL F. Selective catalytic oxidation of glycerol: Perspectives for high value chemicals[J]. Green Chem., 2011,13(8):1960-1979. doi: 10.1039/c1gc15320j

    19. [19]

      WU J X, LI J L, LI Y F, MA X Y, ZHANG W Y, HAO Y M, CAI W B, LIU Z P, GONG M. Steering the glycerol electro-reforming selectivity via cation-intermediate interactions[J]. Angew. Chem. ‒Int. Edit., 2022,61(11)e202113362. doi: 10.1002/anie.202113362

    20. [20]

      ZHENG Y Z, KANG Z H, LI H T, SONG X F, ZHANG W Q, WANG G C, TAO X. Hierarchically structured CuNiP/CuOx-VP nanoarrays construction by heteroatom doping boosting glycerol valorization at industrial-level current density[J]. Adv. Funct. Mater., 2025,35(2)2412810. doi: 10.1002/adfm.202412810

    21. [21]

      YAN Y F, ZHOU H, XU S M, YANG J R, HAO P J, CAI X, REN Y, XU M, KONG X G, SHAO M F, LI Z H, DUAN H H. Electrocatalytic upcycling of biomass and plastic wastes to biodegradable polymer monomers and hydrogen fuel at high current densities[J]. J. Am. Chem. Soc., 2023,145(11):6144-6155. doi: 10.1021/jacs.2c11861

    22. [22]

      CHEN W, ZHANG L, XU L T, HE Y Q, PANG H, WANG S Y, ZOU Y Q. Pulse potential mediated selectivity for the electrocatalytic oxidation of glycerol to glyceric acid[J]. Nat. Commun., 2024,15(1):2420-2431. doi: 10.1038/s41467-024-46752-4

    23. [23]

      KIM D, OH L S, TAN Y C, SONG H, KIM H J, OH J. Enhancing glycerol conversion and selectivity toward glycolic acid via precise nanostructuring of electrocatalysts[J]. ACS Catal., 2021,11(24):14926-14931. doi: 10.1021/acscatal.1c04581

    24. [24]

      SHEN L Q, SUN L Y, DOUTHWAITE M, AKDIM O, TAYLOR S, HUTCHINGS G J. Hollow Au1Cu1(111) bimetallic catalyst promotes the selective electrochemical conversion of glycerol into glycolic acid[J]. ACS Catal., 2024,14(15):11343-11351. doi: 10.1021/acscatal.4c00483

    25. [25]

      GARCIA A C, TOUZALIN T, NIEUWLAND C, PERINI N, KOPER M T M. Enhancement of oxygen evolution activity of nickel oxyhydroxide by electrolyte Alkali cations[J]. Angew. Chem. ‒Int. Edit., 2019,58(37):12999-13003. doi: 10.1002/anie.201905501

    26. [26]

      CHENG Y, ZHANG L F, WANG S, WANG M F, DENG C W, SUN Y, YAN C L, QIAN T. 2 A·cm-2 level large-scale production of hydrogen enabled by constructing higher capacity of interface "electron pocket"[J]. ACS Nano, 2023,17(16):15504-15515. doi: 10.1021/acsnano.3c01720

    27. [27]

      CHEN T Y, WU Q K, LI F, ZHONG R, CHEN Z. Co2P-Ni3S2 heterostructured nanocrystals as catalysts for urea electrooxidation and urea-assisted water splitting[J]. ACS Appl. Nano Mater., 2023,6(19):18364-18371. doi: 10.1021/acsanm.3c03617

    28. [28]

      WEI M, LI M L, GAO Q Z, CAI X, ZHANG S S, FANG Y P, PENG F, YANG S Y. Bifunctional Ni foam supported TiO2@Ni3S2 core@shell nanorod arrays for boosting electrocatalytic biomass upgrading and H2 production reactions[J]. Small, 2023,20(9)2305906.

    29. [29]

      BU Y G, WANG C, ZHANG W K, YANG X H, DING J, GAO G D. Electrical pulse-driven periodic self-repair of Cu-Ni tandem catalyst for efficient ammonia synthesis from nitrate[J]. Angew. Chem. ‒Int. Edit., 2023,62(24)e202217337. doi: 10.1002/anie.202217337

    30. [30]

      WANG H B, THIA L, LI N, GE X M, LIU Z L, WANG X. Selective electro-oxidation of glycerol over Au supported on extended poly(4-vinylpyridine) functionalized graphene[J]. Appl. Catal. B‒Environ. Energy, 2015,166/167:25-31. doi: 10.1016/j.apcatb.2014.11.009

    31. [31]

      GARCIA A C, KOLB M J, SANCHEZ C V Y, VOS J, BIRDJA Y Y, KWON Y, TREMILIOSI-FILHO G, KOPER M T M. Strong impact of platinum surface structure on primary and secondary alcohol oxidation during electro-oxidation of glycerol[J]. ACS Catal., 2016,6(7):4491-4500. doi: 10.1021/acscatal.6b00709

    32. [32]

      VALTER M, DOS SANTOS E C, PETTERSSON L G M, HELLMAN A. Partial electrooxidation of glycerol on close-packed transition metal surfaces: Insights from first-principles calculations[J]. J. Phys. Chem. C, 2020,124(33):17907-17915. doi: 10.1021/acs.jpcc.0c04002

    33. [33]

      VALTER M, BUSCH M, WICKMAN B, GRÖNBECK H, BALTRUSAITIS J, HELLMAN A. Electrooxidation of glycerol on gold in acidic medium: A combined experimental and DFT study[J]. J. Phys. Chem. C, 2018,122(19):10489-10494. doi: 10.1021/acs.jpcc.8b02685

    34. [34]

      XU J Q, YANG S H, JI L, MAO J W, ZHANG W, ZHENG X L, FU H Y, YUAN M L, YANG C K, CHEN H, LI R X. High current CO2 reduction realized by edge/defect-rich bismuth nanosheets[J]. Nano Res., 2023,16(1):53-61. doi: 10.1007/s12274-022-4770-z

    35. [35]

      XU J Q, LI X D, LIU W, SUN Y F, JU Z Y, YAO T, WANG C M, JU H X, ZHU J F, WEI S Q, XIE Y. Carbon dioxide electroreduction into syngas boosted by a partially delocalized charge in molybdenum sulfide selenide alloy monolayers[J]. Angew. Chem. ‒Int. Edit., 2017,56(31):9121-9125. doi: 10.1002/anie.201704928

    36. [36]

      DONG L, CHANG G R, FENG Y, YAO X Z, YU X Y. Regulating Ni site in NiV LDH for efficient electrocatalytic production of formate and hydrogen by glycerol electrolysis[J]. Rare Met., 2022,41(5):1583-1594. doi: 10.1007/s12598-021-01881-3

    37. [37]

      PEI Y H, PI Z F, ZHONG H, CHENG J, JIN F M. Glycerol oxidation-assisted electrochemical CO2 reduction for the dual production of formate[J]. J. Mater. Chem. A, 2022,10(3):1309-1319. doi: 10.1039/D1TA07119J

  • 加载中
    1. [1]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    2. [2]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    3. [3]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    4. [4]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    5. [5]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    6. [6]

      Anqun LAIQiaoyu WUQingqing LIANGQiyong LIGuowen DONGYongjie DINGJia′nan CHENQing YANZhonghua PANWangchuan XIAO . Electrocatalytic water oxidation properties of Nd-Co polynuclear complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2527-2535. doi: 10.11862/CJIC.20250151

    7. [7]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    8. [8]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    9. [9]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    10. [10]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    11. [11]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    12. [12]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    13. [13]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    14. [14]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    15. [15]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    16. [16]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    17. [17]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    18. [18]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    19. [19]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 100024-0. doi: 10.3866/PKU.WHXB202404012

    20. [20]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

Metrics
  • PDF Downloads(1)
  • Abstract views(337)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return