Citation: Haodong JIN, Qingqing LIU, Chaoyang SHI, Danyang WEI, Jie YU, Xuhui XU, Mingli XU. NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048 shu

NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction

  • Corresponding author: Mingli XU, xumingli0326@126.com
  • Received Date: 17 February 2025
    Revised Date: 24 April 2025

Figures(12)

  • A nickel-copper alloy/zinc oxide/nickel foam (NiCu/ZnO/NF) heterojunction structure composite catalyst with abundant active sites was successfully synthesized by the solvothermal-electrodeposition method. The morphology, phase composition, electric catalytic hydrogen evolution reaction (HER) performance, photothermal performance, and overall water decomposition performance of the catalyst were tested and analyzed. The experimental results demonstrated that the NiCu/ZnO/NF exhibited excellent HER catalytic performance, requiring only an overpotential of 25 mV at a current density of 10 mA·cm-2. The efficient catalytic activity can be attributed to the synergistic effect of the NiCu/ZnO heterojunction structure, which accelerates the electron transfer rate and optimizes the HER process. Moreover, the NiCu/ZnO/NF also demonstrated outstanding photothermal conversion performance, significantly reducing its HER overpotential under illumination conditions, and the overpotential decreased to 8 mV at the current density of 10 mA·cm-2. In addition, the integration of NiCu/ZnO/NF into a self-designed electrolytic cell-thermoelectric device enabled whole water decomposition reaction at a cell voltage as low as 0.88 V at a current density of 50 mA·cm-2.
  • 加载中
    1. [1]

      LU Y K, LI Z X, XU Y L, TANG L Q, XU S J, LI D L, ZHU J J, JIANG D L. Bimetallic Co-Mo nitride nanosheet arrays as high-performance bifunctional electrocatalysts for overall water splitting[J]. Chem. Eng. J., 2021,411128433. doi: 10.1016/j.cej.2021.128433

    2. [2]

      SHANG W J, DENG X, WANG B H, TIAN Y Q, LI X, LOU Y B, CHEN J X. Preparation and electrocatalytic performance of MoSe2/CoMOF/NF for oxygen evolution reaction[J]. Chinese J. Inorg. Chem., 2024,40(1):79-87. doi: 10.11862/CJIC.20230284

    3. [3]

      WAN X K, WU H B, GUAN B Y, LUAN D, LOU X W. Confining sub-nanometer Pt clusters in hollow mesoporous carbon spheres for boosting hydrogen evolution activity[J]. Adv. Mater., 2020,32(7)1901349. doi: 10.1002/adma.201901349

    4. [4]

      YIN Y L. Present situation and prospect of hydrogen energy industry[J]. Chem. Ind. Eng., 2021,38(4):78-83.

    5. [5]

      CHEN K, WU F S, XIAO S, ZHANG J B, ZHU L H. PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis[J]. Chinese J. Inorg. Chem., 2024,40(7):1357-1367. doi: 10.11862/CJIC.20230350

    6. [6]

      ZHAO R, ZHANG C Y, WEI L T, WEI D X, SU J Z, GUO L J. Tailoring a local acidic microenvironment on amorphous NiMoB catalyst to boost alkaline and neutral hydrogen evolution reactions[J]. Appl. Catal. B-Environ., 2025,365124928. doi: 10.1016/j.apcatb.2024.124928

    7. [7]

      LIU S D, LI H K, ZHONG J, XU K, WU G, LIU C, ZHOU B B, YAN Y, LI L X, CHA W H, CHANG K K, LI Y Y, LU J. A crystal glass-nanostructured Al-based electrocatalyst for hydrogen evolution reaction[J]. Sci. Adv., 2022,8(44)eadd6421. doi: 10.1126/sciadv.add6421

    8. [8]

      SHEN Q Q, DU X B W, QIAN K C, JIN Z K, FANG Z, WEI T, LI R H. Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis[J]. Chinese J. Inorg. Chem., 2024,40(10):1953-1964. doi: 10.11862/CJIC.20240028

    9. [9]

      LI Z M, XIN S S, ZHANG Y R, ZHANG Z F, LI C P, LI C J, BAO R, YI J H, XU M L, WANG J S. Boosting elementary steps kinetics towards energetic alkaline hydrogen evolution via dual sites on phase-separated Ni-Cu-Mn/hydroxide[J]. Chem. Eng. J., 2023,451138540. doi: 10.1016/j.cej.2022.138540

    10. [10]

      LIU Q Q, SHI C Y, REN Y R, MENG Z W, HUANG B Y, XU M L. Superhydrophilic and heterostructured NiCu/polyaniline nanocomposites as highly efficient electrocatalyst and photothermal conversion layer integrated thermoelectric device for overall water splitting[J]. Appl. Surf. Sci., 2024,664160266. doi: 10.1016/j.apsusc.2024.160266

    11. [11]

      METE S, SENGAR M S, DHAYAL M, KUMAR V, SINGH S K. Lattice strain-induced electronic effects on a heteroatom-doped nickel alloy catalyst for electrochemical water splitting[J]. J. Mater. Chem. A, 2024,12(46):32371-32384. doi: 10.1039/D4TA05604C

    12. [12]

      LÖFFLER T, LUDWIG A, ROSSMEISL J, SCHUHMANN W. What makes high-entropy alloys exceptional electrocatalysts?[J]. Angew. Chem.-Int. Edit., 2021,60(52):26894-26903. doi: 10.1002/anie.202109212

    13. [13]

      SUN C, ZHAO P C, YANG Y Q, LI Z, SHENG W C. Lattice oxygen-induced d-band shifting for enhanced hydrogen oxidation reaction on nickel[J]. ACS Catal., 2022,12(19):11830-11837. doi: 10.1021/acscatal.2c03264

    14. [14]

      PATIL R B, HOUSE S D, MANTRI A, YANG J C, MCKONE J R. Direct observation of Ni-Mo bimetallic catalyst formation via thermal reduction of nickel molybdate nanorods[J]. ACS Catal., 2020,10(18):10390-10398. doi: 10.1021/acscatal.0c02264

    15. [15]

      MUKHERJI R, MATHUR V, SAMARIYA A, MUKHERJI M. Study of the hydrogenation and re-heating of Co-doped ZnO and In2O3 nano composites[J]. Adv. Compos. Hybrid Mater., 2018,1(4):809-818. doi: 10.1007/s42114-018-0052-3

    16. [16]

      AGARWAL S, AHEMAD M J, KUMAR S, DUNG D V, RAI P, KUMAR M, AWASTHI K, YU Y T. Enhanced hydrogen sensing performances of PdO nanoparticles-decorated ZnO flower-like nanostructures[J]. J. Alloy. Compd., 2022,900163545. doi: 10.1016/j.jallcom.2021.163545

    17. [17]

      SAINI B, K H, LAISHRAM D, KRISHNAPRIYA R, SINGHAL R, SHARMA R K. Role of ZnO in ZnO nanoflake/Ti3C2 MXene composites in photocatalytic and electrocatalytic hydrogen evolution[J]. ACS Appl. Nano Mater., 2022,5(7):9319-9333. doi: 10.1021/acsanm.2c01639

    18. [18]

      HAO J, WU K L, LYU C J, YANG Y Q, WU H J, LIU J J, LIU N Y, LAU W M, ZHENG J L. Recent advances in interface engineering of Fe/Co/Ni-based heterostructure electrocatalysts for water splitting[J]. Mater. Horizons, 2023,10(7):2312-2342. doi: 10.1039/D3MH00366C

    19. [19]

      GONG F L, CHEN Z L, CHANG C Q, SONG M, ZHAO Y, LI H T, GONG L H, ZHANG Y L, ZHANG J, ZHANG Y H, WEI S Z, LIU J. Hollow Mo/MoS Vn nanoreactors with tunable built-in electric fields for sustainable hydrogen production[J]. Adv. Mater., 2025,37(5)2415269. doi: 10.1002/adma.202415269

    20. [20]

      HAO B, GAN M Y, GUO J J, LI G S, SONG Y H, Shen Y Q, Xu B S, Liu P Z, Guo J J. Constructing 2D PtSe2/PtCo heterojunctions by partial selenization for enhanced hydrogen evolution[J]. Adv. Funct. Mater., 2025,35(3)2413916. doi: 10.1002/adfm.202413916

    21. [21]

      ZHU Y P, GUO C, ZHENG Y, QIAO S Z. Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes[J]. Accounts Chem. Res., 2017,50(4):915-923. doi: 10.1021/acs.accounts.6b00635

    22. [22]

      LI Y, CHEN J X, CAI P W, WEN Z H. Electrochemically neutralized energy-assisted low-cost acid-alkaline electrolyzer for energy-saving electrolysis hydrogen generation[J]. J. Mater. Chem. A, 2018,6(12):4948-4954. doi: 10.1039/C7TA10374C

    23. [23]

      OH N K, KIM C, LEE J, KWON O, CHOI Y, JUNG G Y, LIM H Y, KWAK S K, KIM G, PARK H. In-situ local phase-transitioned MoSe2 in La0.5Sr0.5CoO3-δ heterostructure and stable overall water electrolysis over 1000 hours[J]. Nat. Commun., 2019,10(1)1723. doi: 10.1038/s41467-019-09339-y

    24. [24]

      YU J H, CONG S M, LIU B J, TENG W T. Construction of MoS/ NiFe-Ni foam p-n heterojunction as photoanode for tetracycline degradation and simultaneous cathodic hydrogen evolution[J]. J. Environ. Chem. Eng., 2022,10(5)108437. doi: 10.1016/j.jece.2022.108437

    25. [25]

      GUPTA A, LIKOZAR B, JAIDKA S. A review on photocatalytic sea-water splitting with efficient and selective catalysts for hydrogen evolution reaction[J]. Renew. Sust. Energ. Rev., 2025,208115074. doi: 10.1016/j.rser.2024.115074

    26. [26]

      WANG L H, XIAO H, YANG L, LI J X, ZI J Z, LIAN Z C. Hollow nanobox-shaped Cu2-xS@ZnxCd1-xS heterojunction by light multireflection with z-scheme mechanism for enhanced photocatalytic hydrogen production[J]. Adv. Funct. Mater., 20242416358.

    27. [27]

      ZHANG X F, GAO W Q, SU X W, WANG F L, LIU B S, WANG J J, LIU H, SANG Y H. Conversion of solar power to chemical energy based on carbon nanoparticle modified photo-thermoelectric generator and electrochemical water splitting system[J]. Nano Energy, 2018,48:481-488. doi: 10.1016/j.nanoen.2018.03.055

    28. [28]

      ZHAO L L, YANG Z Y, CAO Q, YANG L J, ZHANG X F, JIA J, SANG Y H, WU H J, ZHOU W J, LIU H. An earth-abundant and multifunctional Ni nanosheets array as electrocatalysts and heat absorption layer integrated thermoelectric device for overall water splitting[J]. Nano Energy, 2019,56:563-570. doi: 10.1016/j.nanoen.2018.11.035

    29. [29]

      GAO P, ZHANG Y P, WANG M, YU W F, YAN Z H, LI J B. Cost-efficient sunlight-driven thermoelectric electrolysis over Modoped Ni5P4 nanosheets for highly efficient alkaline water/seawater splitting[J]. J. Mater. Sci. Technol., 2025,211:134-144. doi: 10.1016/j.jmst.2024.05.019

    30. [30]

      YUAN H F, LIU F, XUE G B, LIU H, WANG Y J, ZHAO Y W, LIU X Y, ZHANG X L, ZHAO L L, LIU Z, LIU H, ZHOU W J. Laser patterned and bifunctional Ni@N-doped carbon nanotubes as electrocat-alyst and photothermal conversion layer for water splitting driven by thermoelectric device[J]. Appl. Catal. B-Environ., 2021,283119647. doi: 10.1016/j.apcatb.2020.119647

    31. [31]

      QIN Y X, QIN B C, WANG D Y, CHANG C, ZHAO L D. Solid-state cooling: Thermoelectrics[J]. Energy Environ. Sci., 2022,15(11):4527-4541. doi: 10.1039/D2EE02408J

    32. [32]

      LI Z X, YU C C, WEN Y Y, GAO Y, XING X F, WEI Z T, SUN H, ZHANG Y W, SONG W Y. Mesoporous hollow Cu-Ni Alloy nanocage from core-shell Cu@Ni nanocube for efficient hydrogen evolution reaction[J]. ACS Catal., 2019,9(6):5084-5095. doi: 10.1021/acscatal.8b04814

    33. [33]

      LIU J, ZHANG Y H, HUANG Z A, BAI Z M, GAO Y K. Photoelec-trocatalytic oxidation of methane over three-dimensional ZnO/CdS/NiFe layered double hydroxide[J]. Chin. J. Eng., 2021,43(8):1064-1072.

    34. [34]

      ZHU J X, XIONG Y H, GUO R. Research progress in modification of TiO 2 photocatalyst[J]. Inorganic Chemicals Industry, 2020,52(3):23-27.

    35. [35]

      XU L, WANG S P. A novel hierarchical MoS2-ZnO-Ni electrocatalyst prepared by electrodeposition coupling with dealloying for hydrogen evolution reaction[J]. J. Electroanal. Chem., 2018,808:173-179. doi: 10.1016/j.jelechem.2017.12.022

    36. [36]

      CHEN G B, WANG T, ZHANG J, LIU P, SUN H J, ZHUANG X D, CHEN M W, FENG X L. Accelerated hydrogen evolution kinetics on NiFe-layered double hydroxide electrocatalysts by tailoring water dissociation active sites[J]. Adv. Mater., 2018,30(10)1706279. doi: 10.1002/adma.201706279

    37. [37]

      HUANG C J, WANG Z W, YAO Z Y, MA Y L, GUO F, CHAI L J. Facile fabrication of an enhanced electrodeposited nickel electrode for alkaline hydrogen evolution reaction[J]. Electrochim. Acta, 2024,477143792. doi: 10.1016/j.electacta.2024.143792

    38. [38]

      XU H J, WANG X C, ZHAO W, GUO R J, XUE Z Y, ZHANG T, SHAO Y, YAO K F. Facile self-oxidized Ni nano-foam as high-performance catalyst for hydrogen and oxygen evolution[J]. Sci. China-Mater., 2023,66(10):3855-3864. doi: 10.1007/s40843-023-2522-y

    39. [39]

      ZHAO Y, ZHANG J, ZHANG W S, WU A L. Growth of Ni/Mo/Cu on carbon fiber paper: An efficient electrocatalyst for hydrogen evolution reaction[J]. Int. J. Hydrog. Energy, 2021,46(72):35550-35558. doi: 10.1016/j.ijhydene.2021.03.085

    40. [40]

      CHEN F F, ZHANG Y, HAO X Y, LIU Y D, SONG Y F, GAO G Z, XU M Q, SUN C, LIU H, ZHANG X H, LU Z M, DONG H, LU F, WANG W H, LIU H, CHENG Y H. Monometallic interphase synergistic Ni-based catalysts prepared by facile magnetron sputtering for efficient alkaline hydrogen evolution[J]. J. Alloy. Compd., 2024,976173103. doi: 10.1016/j.jallcom.2023.173103

    41. [41]

      PANG C X, ZHU S L, XU W C, LIANG Y Q, LI Z Y, WU S L, JIANG H, WANG H, CUI Z D. Self-standing Mo-NiO/Ni electrocatalyst with nanoporous structure for hydrogen evolution reaction[J]. Electrochim. Acta, 2023,439141621. doi: 10.1016/j.electacta.2022.141621

    42. [42]

      LI J M, GAO R T, LIU X H, ZHANG X Y, WU L M, WANG L. Single-atom Pt embedded in defective layered double hydroxide for efficient and durable hydrogen evolution[J]. ACS Appl. Mater. Interfaces, 2023,15(36):42501-42510. doi: 10.1021/acsami.3c07000

    43. [43]

      MOUSAVI N, ENSAFI A A, ZAREAN M K, HADADZADEH H. Synthesis of quinacridone derivative supported on ZnO hexagonal as a new electrocatalyst for hydrogen evolution reaction[J]. J. Electroanal. Chem., 2023,928117029. doi: 10.1016/j.jelechem.2022.117029

    44. [44]

      PAN Y, SUN K A, LIU S J, CAO X, WU K L, CHEONG W C, CHEN Z, WANG Y, LI Y, LIU Y Q, WANG D S, PENG Q, CHEN C, LI Y D. Core-shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting[J]. J. Am. Chem. Soc., 2018,140(7):2610-2618. doi: 10.1021/jacs.7b12420

    45. [45]

      BHATTARAI R M, NGUYEN L, LE N, CHHETRI K, ACHARYA D, TEKE S, SAUD S, NGUYEN D B, KIM S J, MOK Y S. Cyanide functionalization and oxygen vacancy creation in Ni-Fe nano petals sprinkled with MIL-88A derived metal oxide nano droplets for bifunctional alkaline seawater electrolysis[J]. Small, 20252410027. doi: 10.1002/smll.202410027

    46. [46]

      GUO L K, LIU T P, ZHANG L, MA M Y, GAO P, CAO D, CHENG D J. Novel Ru-O3Se4 single atoms regulate the charge redistribution at Ni3Se2/FeSe2 interface for improved overall water splitting in alkaline media[J]. Adv. Energy Mater., 2025,15(1)2402558. doi: 10.1002/aenm.202402558

    47. [47]

      WANG Q L, XU C Q, LIU W, HUNG S F, YANG H B, GAO J J, CAI W Z, CHEN H M, LI J, LIU B. Coordination engineering of iridium nanocluster bifunctional electrocatalyst for highly efficient and pH-universal overall water splitting[J]. Nat. Commun., 2020,11(1)4246. doi: 10.1038/s41467-020-18064-w

    48. [48]

      MUSHTAQ M, ZHU Z X, YANG H, KHANAM Z, HU Y W, MATHI S, WANG Z M, BALOGUN M S, HUANG Y C. Lattice strain-modulated trifunctional CoMoO 4 polymorph-based electrodes for asymmetric supercapacitors and self-powered water splitting[J]. Small, 2025,212409418. doi: 10.1002/smll.202409418

  • 加载中
    1. [1]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    2. [2]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    3. [3]

      Kai PENGXinyi ZHAOZixi CHENXuhai ZHANGYuqiao ZENGJianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454

    4. [4]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    5. [5]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    6. [6]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    7. [7]

      Zhengyu ZhouHuiqin YaoYoulin WuTeng LiNoritatsu TsubakiZhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-0. doi: 10.3866/PKU.WHXB202312010

    8. [8]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    9. [9]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    10. [10]

      Sumiya Akter DristyMd Ahasan HabibShusen LinMehedi Hasan JoniRutuja MandavkarYoung-Uk ChungMd NajibullahJihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-0. doi: 10.1016/j.actphy.2025.100079

    11. [11]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    12. [12]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    13. [13]

      Huasen LuShixu SongQisen JiaGuangbo LiuLuhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035

    14. [14]

      Jia WangQing QinZhe WangXuhao ZhaoYunfei ChenLiqiang HouShangguo LiuXien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044

    15. [15]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    16. [16]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    17. [17]

      Minglei SunZhong-Yong Yuan . Valorization strategies for electrodegradation of nitrogenous wastes in sewage. Acta Physico-Chimica Sinica, 2025, 41(9): 100108-0. doi: 10.1016/j.actphy.2025.100108

    18. [18]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    19. [19]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    20. [20]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

Metrics
  • PDF Downloads(2)
  • Abstract views(637)
  • HTML views(57)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return