CoMoNiO-S/nickel foam heterostructure composite for efficient oxygen evolution catalysis performance
- Corresponding author: Hong YANG, hmily820805@163.com
Citation:
Hong YANG, Shengjuan SHAO, Baoyi LI, Yifan LU, Na LI. CoMoNiO-S/nickel foam heterostructure composite for efficient oxygen evolution catalysis performance[J]. Chinese Journal of Inorganic Chemistry,
;2026, 42(1): 203-215.
doi:
10.11862/CJIC.20250041
LIU Q Q, SHI C Y, REN Y R, FAN X A, MENG Z W, HUANG B Y, XU M L. Superhydrophilic and heterostructured NiCu/polyaniline nanocomposites as highly efficient electrocatalyst and photothermal conversion layer integrated thermoelectric device for overall water splitting[J]. Appl. Surf. Sci., 2024, 664: 160266
doi: 10.1016/j.apsusc.2024.160266
ZHANG L H, FAN Q, LI K, ZHANG S, MA X B. First-row transition metal oxide oxygen evolution electrocatalysts: Regulation strategies and mechanistic understandings[J]. Sustain. Energ. Fuels, 2020, 4: 5417-5432
doi: 10.1039/D0SE01087A
ZhANG Y Y, FU Q, SONG B, XU P. Regulation strategy of transition metal oxide-based electrocatalysts for enhanced oxygen evolution reaction[J]. Acc. Mater. Res., 2022, 3: 1088-1100
doi: 10.1021/accountsmr.2c00161
WEI C, SUN S N, MANDLER D, WANG X, QIAO S Z, XU Z J. Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity[J]. Chem. Soc. Rev., 2019, 48: 2518-2534
doi: 10.1039/C8CS00848E
GAO J J, TAO H B, LIU B. Progress of nonprecious‐metal‐based electrocatalysts for oxygen evolution in acidic media[J]. Adv. Mater., 2021, 33: 2003786
doi: 10.1002/adma.202003786
CHEN M, KITIPHAPIBOON N, FENG C R, ABUDULA A, MA Y F, GUAN G Q. Recent progress in transition-metal-oxide-based electrocatalysts for the oxygen evolution reaction in natural seawater splitting: A critical review[J]. eScience, 2023, 3: 100111
doi: 10.1016/j.esci.2023.100111
ADAMSON W, BO X, LI Y B, SURYANTO B H R, CHEN X J, ZHAO C. Co-Fe binary metal oxide electrocatalyst with synergistic interface structures for efficient overall water splitting[J]. Catal. Today, 2020, 351: 44-49
doi: 10.1016/j.cattod.2019.01.060
LI Z W, ZHANG K, WEI S C, ZHANG Z S, HAN H S, LIU G H. Titanium oxide supported molybdenum-nickel-iron oxide electrocatalyst for efficient and durable oxygen evolution reaction[J]. Fuel, 2024, 375: 132509
doi: 10.1016/j.fuel.2024.132509
HE R Z, HUANG X Y, FENG L G. Recent progress in transition-metal sulfide catalyst regulation for improved oxygen evolution reaction[J]. Energy & Fuels, 2022, 36: 6675-6694
LI F Q, WU H, LV S C, MA Y J, WANG B, REN Y L, WANG C, SHI Y X, JI H R, GU J, TANG S C, MENG X K. Two birds with one stone: contemporaneously enhancing OER catalytic activity and stability for dual‐phase medium‐entropy metal sulfides[J]. Small, 2023, 20: 2309025
QIN J F, YANG M, CHEN T S, DONG B, HOU S, MA X, ZHOU Y N, YANG X L, NAN J, CHAI Y M. Ternary metal sulfides MoCoNiS derived from metal organic frameworks for efficient oxygen evolution[J]. Int. J. Hydrog. Energy, 2020, 45: 2745-2753
doi: 10.1016/j.ijhydene.2019.11.156
ZHANG S Q, CHENG Y, WANG P, LEI X F, YOU J H, GUO R, ZHANG H Z. Research progress on surface reconstruction of transition metal sulfides (TMS, M=Fe, Co, Ni) as precatalysts for oxygen evolution reaction[J]. Int. J. Hydrog. Energy, 2024, 51: 545-560
doi: 10.1016/j.ijhydene.2023.10.122
WU L, SHEN X P, JI Z Y, YUAN J R, YANG S K, ZHU G X, CHEN L Z, KONG L R, ZHOU H B. Facile synthesis of medium‐entropy metal sulfides as high‐efficiency electrocatalysts toward oxygen evolution reaction[J]. Adv. Funct. Mater., 2022, 33: 2208170
VERMA M, SINHA L, SHIRAGE P M. Electrodeposited nanostructured flakes of cobalt, manganese and nickel-based sulfide (CoMnNiS) for electrocatalytic alkaline oxygen evolution reaction (OER)[J]. J. Mater. Sci.‒Mater. Electron., 2021, 32: 12292-12307
doi: 10.1007/s10854-021-05860-3
REN Y Y, SHI C Y, ZHU E Z, WEI D Y, MENG Z W, HUANG B Y, XU M L. Optimization of light response and electron redistribution of active sites by structuring CoS2/MoS2/Ni3S2 heterojunction for highly efficient photo-assisted oxygen evolution[J]. J. Alloy. Compd., 2024, 1000: 175109
JUNAID A, ABDULLAH M, BANO N, NOREEN F, SHAH S I A, ALSHGARI R A, MAHAMMAD S, MANZOOR S, EHSAN M F, ASHIQ M N. Facile synthesis of strontium selenide supported copper sulfide hybrid nanosheets as an efficient electrode for high-performance OER[J]. J. Korean Ceram. Soc., 2024, 61: 469-481
doi: 10.1007/s43207-024-00372-2
SINGH H, MARLEY-HINES M, CHAKRAVARTY S, NATH M. Multi-walled carbon nanotube supported manganese selenide as a highly active bifunctional OER and ORR electrocatalyst[J]. J. Mater. Chem. A, 2022;10: 6772-6784
doi: 10.1039/D1TA09864K
WU Z. Transition metal selenides for oxygen evolution reaction[J]. Energy Technol., 2024, 12: 2301574
doi: 10.1002/ente.202301574
MASUD J, LIYANAGE W P R, CAO X, SAXENA A, NATH M. Copper selenides as high-efficiency electrocatalysts for oxygen evolution reaction[J]. ACS Appl. Mater. Interfaces, 2018, 1: 4075-4083
SRINIVAS K, MA F, LIU Y, ZHANG Z, WU Y, CHEN Y. Metal-organic framework-derived Fe-doped Ni3Se4/NiSe2 heterostructure-embedded mesoporous tubes for boosting oxygen evolution reaction[J]. ACS Appl. Mater. Interfaces, 2022, 14: 52927-52939
doi: 10.1021/acsami.2c16133
SWESI A T, MASUD J, NATH M. Nickel selenide as a high-efficiency catalyst for oxygen evolution reaction[J]. Energ. Environ. Sci., 2016, 9: 1771-1782
doi: 10.1039/C5EE02463C
BATOOL M, WASEEM A, NADEEM M A, NADEEM M A. Phase pure synthesis of iron-nickel nitride nanoparticles: A low cost electrocatalyst for oxygen evolution reaction[J]. Int. J. Hydrog. Energy, 2023;48: 18280-18290
doi: 10.1016/j.ijhydene.2023.01.308
LU Y K, LI Z X, XU Y L, TANG L Q, XU S J, LI D, ZHU J J, JIANG D L. Bimetallic Co-Mo nitride nanosheet arrays as high-performance bifunctional electrocatalysts for overall water splitting[J]. Chem. Eng. J., 2021, 411: 128433
doi: 10.1016/j.cej.2021.128433
CHEN C H, RASAL A S, CHANG J Y, YU W Y. Unlocking the catalytic potential of tungsten carbide coordinated with 3d transition metals in oxygen electrochemistry[J]. Chem. Eng. J., 2024, 497: 154145
doi: 10.1016/j.cej.2024.154145
KIRAN G K, SREEKANTH T V M, YOO K, KIM J. Bifunctional electrocatalytic activity of two-dimensional multilayered vanadium carbide (MXene) for ORR and OER[J]. Mater. Chem. Phys., 2023, 296: 127272
doi: 10.1016/j.matchemphys.2022.127272
GUO Y Y, HUANG Q, DING J Y, ZHONG L, LI T T, PAN J Q, HU Y, QIAN J J, HUANG S M. CoMo carbide/nitride from bimetallic MOF precursors for enhanced OER performance[J]. Int. J. Hydrog. Energy, 2021, 46: 22268-22276
doi: 10.1016/j.ijhydene.2021.04.084
ROY S, BAGCHI D, DHEER L, SARMA S C, RAJAJI V, NARAYANA C, WAGHMARE U V, PETER S C. Mechanistic insights into the promotional effect of Ni substitution in non-noble metal carbides for highly enhanced water splitting[J]. Appl. Catal. B‒Environ., 2021, 298: 120560
doi: 10.1016/j.apcatb.2021.120560
SEENIVASAN S, SEO J. Inverting destructive electrochemical reconstruction of niobium nitride catalyst to construct highly efficient HER/OER catalyst[J]. Chem. Eng. J., 2023, 454: 140558
doi: 10.1016/j.cej.2022.140558
LEI X, QING J C, WENG L T, LI S M, PENG R Z, WANG W, WANG J L. Porous FeP/CoP heterogeneous materials as efficient alkaline oxygen evolution reaction (OER) catalysts[J]. New J. Chem., 2022, 46: 15351-15357
doi: 10.1039/D2NJ01557A
CAO Q B, SU W X, LIU H R, FENG C C, ZHOU Q. Nickel-cobalt phosphide nanowires as precatalysts for surface reconstruction to prepare durable and efficient OER catalysts[J]. Electroanal. Chem., 2024, 952: 117928
doi: 10.1016/j.jelechem.2023.117928
WANG Y, XIE M S, DAI F F, LIU J, ZHANG L B, ZHANG R Z, ZHANG Z, HU W P. Iron regulates the interfacial charge distribution of transition metal phosphides for enhanced oxygen evolution reaction[J]. J. Colloid Interface Sci., 2022, 615: 725-731
doi: 10.1016/j.jcis.2022.02.009
ZEENAT, AHMAD Z, MAQBOOL A, ASIF HUSSAIN M, ADEL PASHAMEAH R, SHAHZADI A, NAZRA N, IQBAL S, ALANAZI A K, ASHIQ M N, ABO-DIEF H M. One-pot solvothermal synthesis of highly catalytic Janus transition metal phosphides (TMPs) for high performance OER[J]. Fuel, 2023, 331: 125913
doi: 10.1016/j.fuel.2022.125913
LIU Y L, GE P J, LI Y F, ZHAI X W, LU K, CHEN X X, YANG J M, WANG Z Y, ZHANG H Y, GE G X. Prussian blue analogues derived Fe-NiCoP reveals the cooperation of Fe doping and phosphating for enhancing OER activity[J]. Appl. Surf. Sci., 2023, 615: 156378
doi: 10.1016/j.apsusc.2023.156378
BHUTANI D, MAITY S, CHATURVEDI S, CHALAPATHI D, WAGHMARE U V, NARAYANA C, PRABHAKARAN V C, MUTHUSAMY E. Heterostructure from heteromixture: Unusual OER activity of FeP and CoP nanostructures on physical mixing[J]. J. Mater. Chem. A, 2022, 10: 22354-22362
doi: 10.1039/D2TA04296G
WU Q X, DONG A Q, YANG C C, YE L, ZHAO L J, JIANG Q. Metal-organic framework derived Co3O4@Mo-Co3S4-Ni3S2 heterostructure supported on Ni foam for overall water splitting[J]. Chem. Eng. J., 2021, 413: 127482
doi: 10.1016/j.cej.2020.127482
XIONG T, LI G F, YOUNG D J, TAN Z Y, YIN X H, MI Y, HU F L. In-situ surface-derivation of Ni-Mo bimetal sulfides nanosheets on Co3O4 nanoarrays as an advanced overall water splitting electrocatalyst in alkaline solution[J]. J. Alloy. Compd., 2019, 791: 328-335
doi: 10.1016/j.jallcom.2019.03.313
YANG H, HU T P, MENG R Q, GUO L J. Efficient Mo-Co(OH)2/Co3O4/Ni foam electrocatalyst for overall water splitting[J]. J. Solid State Chem., 2023, 320: 123837
doi: 10.1016/j.jssc.2023.123837
DU X Q, YANG Z, LI Y, GONG Y Q, ZHAO M. Controlled synthesis of Ni(OH)2/Ni3S2 hybrid nanosheet arrays as highly active and stable electrocatalysts for water splitting[J]. J. Mater. Chem. A, 2018, 6: 6938-6946
doi: 10.1039/C8TA01387J
LI S M, YU Y M, SUN X Y, DING X F, YANG H F, PAN S B, WANG L X, ZHANG Q T. Enhanced electronic interaction in hemin@Ni(OH)2 composite for efficient electrocatalytic oxygen evolution[J]. J. Alloy. Compd., 2022, 892: 161780
doi: 10.1016/j.jallcom.2021.161780
SUN F Z, LI C Q, LI B, LIN Y Q. Amorphous MoSx developed on Co(OH)2 nanosheets generating efficient oxygen evolution catalysts[J]. J. Mater. Chem. A, 2017, 5: 23103-23114
doi: 10.1039/C7TA07729G
JAIN P, JHA S, INGOLE P P. Concurrently engineered Lewis acid sites and coordination sphere vacancies in CoFe Prussian blue analogues for boosted bifunctional oxygen electrocatalysis[J]. ACS Appl. Energy Mater., 2023, 6: 3278-3290
LUO X, JI P X, WANG P Y, CHENG R L, CHEN D C, LIN C, ZHANG J N, HE J W, SHI Z H, LI N, XIAO S Q, MU S C. Interface engineering of hierarchical branched Mo‐doped Ni3S2/NixPy hollow heterostructure nanorods for efficient overall water splitting[J]. Adv. Energy Mater., 2020, 10: 1903891
doi: 10.1002/aenm.201903891
CUI Z, GE Y C, CHU H, BAINES R, DONG P, TANG J H, YANG Y, AJAYAN P M, YE M X, SHEN J F. Controlled synthesis of Mo-doped Ni3S2 nano-rods: An efficient and stable electro-catalyst for water splitting[J]. J. Mater. Chem. A, 2017, 5: 1595-1602
doi: 10.1039/C6TA09853C
WU C R, LIU B T, WANG J, SU Y Y, YAN H Q, NG C T, LI C, WEI J M. 3D structured Mo-doped Ni3S2 nanosheets as efficient dual-electrocatalyst for overall water splitting[J]. Appl. Surf. Sci., 2018, 441: 1024-1033
doi: 10.1016/j.apsusc.2018.02.076
SUN R, ZHAO Z F, SU Z H, LI T S, ZHAO J X, SHANG Y C. Multi-interface MoS2/Ni3S4/Mo2S3 composite as an efficient electrocatalyst for hydrogen evolution reaction over a wide pH range[J]. Dalton Trans, 2022, 51: 6825-6831
doi: 10.1039/D2DT00231K
LIU R R, ZHANG H M, ZHANG X, WU T X, ZHAO H J, WANG G Z. Co9S8@N, P-doped porous carbon electrocatalyst using biomass-derived carbon nanodots as a precursor for overall water splitting in alkaline media[J]. RSC Adv., 2017, 7: 19181-19188
doi: 10.1039/C7RA01798G
ZHANG G S, WANG Y, CHEN M, XU J X, WANG L. ZIF-67-derived carbon@Co3S4/CoSO4/MnO polyhedron to activate peroxymonosulfate for degrading levofloxacin: Synergistic effect and mechanism[J]. Chem. Eng. J., 2023, 451: 138976
doi: 10.1016/j.cej.2022.138976
YANG Y, YAO H Q, YU Z H, ISLAM S M, HE H Y, YUAN M W, YUE Y H, XU K, HAO W C, SUN G B, LI H F, MA S L, ZAPOL P, KANATZIDIS M G. Hierarchical nanoassembly of MoS2/Co9S8/Ni3S2/Ni as a highly efficient electrocatalyst for overall water splitting in a wide pH range[J]. J. Am. Chem. Soc., 2019, 141: 10417-10430
doi: 10.1021/jacs.9b04492
ZHOU S Y, ZHU F, CHENG H, KOMARNENI S, MA J F. In-situ growth of Ni3S2@Mo2S3 catalyst on Mo-Ni foam for degradation of p-nitrophenol with a good synergetic effect by using ozone[J]. J. Environ. Chem. Eng., 2023, 11: 111477
doi: 10.1016/j.jece.2023.111477
CHENG P F, YUAN C, ZHOU Q W, HU X B, LI J, LIN X Z, WANG X, JIN M L, SHUI L L, GAO X S, NÖTZEL R, ZHOU G F, ZHANG Z, LIU J M. Core-Shell MoS2@CoO electrocatalyst for water splitting in neural and alkaline solutions[J]. J. Phys. Chem. C, 2019;123: 5833-5839
doi: 10.1021/acs.jpcc.8b10954
AFTAB U, TAHIRA A, SAMO A H, ABRO M I, BALOCH M M, KUMAR M, SIRAJUDDIN, IBUPOTO Z H. Mixed CoS2@Co3O4 composite material: An efficient nonprecious electrocatalyst for hydrogen evolution reaction[J]. Int. J. Hydrog. Energy, 2020, 45: 13805-13813
doi: 10.1016/j.ijhydene.2020.03.131
MUTHURASU A, MARUTHAPANDIAN V, KIM H Y. Metal-organic framework derived Co3O4/MoS2 heterostructure for efficient bifunctional electrocatalysts for oxygen evolution reaction and hydrogen evolution reaction[J]. Appl. Catal. B‒Environ., 2019, 248: 202-210
doi: 10.1016/j.apcatb.2019.02.014
ABD-ELRAHIM, CHUN D M. Nanosized Co3O4-MoS2 heterostructure electrodes for improving the oxygen evolution reaction in an alkaline medium[J]. J. Alloy. Compd., 2021, 853: 156946
doi: 10.1016/j.jallcom.2020.156946
KIM S, MIN K, KIM H, YOO R, SHIM S E, LIM D, BAECK S H. Bimetallic-metal organic framework-derived Ni3S2/MoS2 hollow spheres as bifunctional electrocatalyst for highly efficient and stable overall water splitting[J]. Int. J. Hydrog. Energy, 2022, 47: 8165-8176
doi: 10.1016/j.ijhydene.2021.12.208
LIU H R, OUYANG D, ZhOU Q, FENG C C. Successional heterostructure MoS2-Ni3S2 nanospheres based on 3D nano-porous Ni: An efficient electrocatalyst for overall water splitting[J]. J. Alloy. Compd., 2022, 920: 165243
doi: 10.1016/j.jallcom.2022.165243
WANG H X, REN J S, WANG A J, WANG Q, ZHAO W, ZHAO L. Synergistic catalysis of graphitic carbon nitride supported bimetallic sulfide nanostructures for efficient oxygen generation[J]. Chem. Commun., 2022, 58: 9202-9205
doi: 10.1039/D2CC03619C
ZHANG Y, GUO H R, SONG M, QIU Z Z, WANG S H, SUN L M. Hierarchical interfaces engineering-driven of the CoS2/MoS2/Ni3S2/NF electrode for high-efficient and stable oxygen evolution and urea oxidation reactions[J]. Appl. Surf. Sci., 2023, 617: 156621
doi: 10.1016/j.apsusc.2023.156621
LING T, ZHANG T, GE B H, HAN L L, ZHENG L R, LIN F, XU Z R, HU W B, DU X W, DAVEY K, QIAO S Z. Well‐dispersed nickel‐ and zinc‐tailored electronic structure of a transition metal oxide for highly active alkaline hydrogen evolution reaction[J]. Adv. Mater., 2019, 31: 1807771
doi: 10.1002/adma.201807771
WANG Q R, DU X Q, ZHANG X S. Controlled synthesis of NiCoM (M=P, S, Se, O)-Ni3S2-MoS2 hybrid material as environmentally friendly water splitting catalyst[J]. Int. J. Hydrog. Energy, 2023, 48: 9260-9272
doi: 10.1016/j.ijhydene.2022.12.021
YAO M Q, SUN B L, HE L X, WANG N, HU W C, KOMARNENI S. Self-assembled Ni3S2 nanosheets with mesoporous structure tightly held on Ni foam as a highly efficient and long-term electrocatalyst for water oxidation[J]. ACS Sustain. Chem. Eng., 2019, 7: 5430-5439
doi: 10.1021/acssuschemeng.8b06525
PANG N, LI Y, TONG X, WANG M Q, SHI H Y, WU D J, XIONG D Y, XU S H, WANG L W, JIANG L, CHU P K. Activation of basal-plane sulfur sites on MoS2@Ni3S2 nanorods by Zr plasma ion implantation for bifunctional electrocatalysts[J]. J. Alloy. Compd., 2023, 947: 169448
doi: 10.1016/j.jallcom.2023.169448
GAO H W, ZANG J B, WANG Y H, ZHOU S Y, TIAN P F, SONG S W, TIAN X Q, LI W. One-step preparation of cobalt-doped NiS@MoS2 core-shell nanorods as bifunctional electrocatalyst for overall water splitting[J]. Electrochim. Acta, 2021, 377: 1138051
WEI C, XU Z J. The Comprehensive understanding of as an evaluation parameter for electrochemical water splitting[J]. Small Methods, 2018, 2: 1800168
doi: 10.1002/smtd.201800168
YIN J, LI Y X, LV F, LU M, SUN K, WANG W, WANG L, CHENG F Y, LI Y F, XI P X, GUO S J. Oxygen vacancies dominated NiS2/CoS2 interface porous nanowires for portable Zn-air batteries driven water splitting devices[J]. Adv. Mater., 2017, 29: 1704681
doi: 10.1002/adma.201704681
WANG Q, ZHAO H Y, LI F M, SHE W Y, WANG X M, XU L, JIAO H. Mo-doped Ni2P hollow nanostructures: Highly efficient and durable bifunctional electrocatalysts for alkaline water splitting[J]. J. Mater Chem. A, 2019, 7: 7636-7643
doi: 10.1039/C9TA01015G
Yifan LIU , Zhan ZHANG , Rongmei ZHU , Ziming QIU , Huan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008
Haifeng ZHENG , Xingzhe GUO , Yunwei WEI , Xinfang WANG , Huimin QI , Yuting YAN , Jie ZHANG , Bingwen LI . Post-synthetic modification strategy to construct Co-MOF composites for boosting oxygen evolution reaction activity. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 193-202. doi: 10.11862/CJIC.20250029
Haoying ZHAI , Lanzong WEN , Wenjie LIAO , Qin LI , Wenjun ZHOU , Kun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320
Shaohua YANG , Na'na GAO , Yaqiong GONG . Metal-organic framework-templated construction of FeOOH@CoMoO4/nickel foam heterostructure for enhanced oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2175-2185. doi: 10.11862/CJIC.20250218
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Qiyan Wu , Ruixin Zhou , Zhangyi Yao , Tanyuan Wang , Qing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
Jiawei Ge , Xian Wang , Heyuan Tian , Hao Wan , Wei Ma , Jiangying Qu , Junjie Ge . Iridium-based catalysts for oxygen evolution reaction in proton exchange membrane water electrolysis. Chinese Chemical Letters, 2025, 36(5): 109906-. doi: 10.1016/j.cclet.2024.109906
Weibin Shen , Jie Liu , Gongyu Wen , Shuai Li , Binhui Yu , Shuangyu Song , Bojie Gong , Rongyang Zhang , Shibao Liu , Hongpeng Wang , Yao Wang , Yujing Liu , Huadong Yuan , Jianming Luo , Shihui Zou , Xinyong Tao , Jianwei Nai . Formation of FeNi-based nanowire-assembled superstructures with tunable anions for electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(7): 110184-. doi: 10.1016/j.cclet.2024.110184
Qianqing Xu , Qu Jiang , Haoyue Zhang , Fang Song . Deciphering the active species of anodically activated carbon-based electrocatalysts for oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(11): 111417-. doi: 10.1016/j.cclet.2025.111417
Zhongjie Song , Nannan Zhang , Jun Yu , Huiyu Sun , Zhengying Wu , Yukou Du . Growth of Ce-doped NiCo-LDHs on tin dioxide-modified nickel foam as oxygen evolution reaction catalyst electrode. Chinese Chemical Letters, 2026, 37(1): 111804-. doi: 10.1016/j.cclet.2025.111804
Min Song , Qian Zhang , Tao Shen , Guanyu Luo , Deli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083
Yukang Xiong , Lin Lv , Guokun Ma , Hanbin Wang , Houzhao Wan , Hao Wang . Construction and structural evolution of heterostructured cobalt-iron alloys@phosphates as oxygen evolution electrocatalyst toward rechargeable Zn-air battery. Chinese Journal of Structural Chemistry, 2025, 44(11): 100699-100699. doi: 10.1016/j.cjsc.2025.100699
Peng Wang , Daijie Deng , Suqin Wu , Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378
Inset in panel c: enlarged EIS views of CoMoNiO-S/NF-110 and MoNi-S/NF; Inset in panel f: SEM images of CoMoNiO-S/NF-110 before and after OER stability test.