Citation: Haifeng ZHENG, Xingzhe GUO, Yunwei WEI, Xinfang WANG, Huimin QI, Yuting YAN, Jie ZHANG, Bingwen LI. Post-synthetic modification strategy to construct Co-MOF composites for boosting oxygen evolution reaction activity[J]. Chinese Journal of Inorganic Chemistry, ;2026, 42(1): 193-202. doi: 10.11862/CJIC.20250029 shu

Post-synthetic modification strategy to construct Co-MOF composites for boosting oxygen evolution reaction activity

Figures(6)

  • The poor electrical conductivity of metal-organic frameworks (MOFs) limits their electrocatalytic performance in the oxygen evolution reaction (OER). In this study, a Py@Co-MOF composite material based on pyrene (Py) molecules and {[Co2(BINDI)(DMA)2]·DMA}n (Co-MOF, H4BINDI=N,N′-bis(5-isophthalic acid)naphthalenediimide, DMA=N,N-dimethylacetamide) was synthesized via a one-pot method, leveraging π-π interactions between pyrene and Co-MOF to modulate electrical conductivity. Results demonstrate that the Py@Co-MOF catalyst exhibited significantly enhanced OER performance compared to pure Co-MOF or pyrene-based electrodes, achieving an overpotential of 246 mV at a current density of 10 mA·cm-2 along with excellent stability. Density functional theory (DFT) calculations reveal that the formation of O* in the second step is the rate-determining step (RDS) during the OER process on Co-MOF, with an energy barrier of 0.85 eV due to the weak adsorption affinity of the OH* intermediate for Co sites.
  • 加载中
    1. [1]

      WEI X DONG, LIU N, QIAO S Y. Preparation and oxygen evolution reaction electrocatalytic performance of NiMoO4 nanowires@ZnCo MOF(350) core-shell structure composites[J]. Chinese J. Inorg. Chem., 2022, 38(11): 2308-2320

    2. [2]

      WANG X Z, LIU S, ZHANG H, ZHANG S S, MENG G, LIU Q, SUN Z Y, LUO J, LIU X J. Polycrystalline SnSx nanofilm enables CO2 electroreduction to formate with high current density[J]. Chem. Commun., 2022, 58: 7654-7657  doi: 10.1039/D2CC01888H

    3. [3]

      PAUL A, UPADHYAY K K, BACKOVIC G, KARMAKAR A, FERREIRA L F V, SLJUKIC B, MONTEMOR M F, DA SILVA M F C G, POMBEIRO A J L. Versatility of amide-functionalized Co and Ni coordination polymers: From thermochromic-triggered structural transformations to supercapacitors and electrocatalysts for water splitting[J]. Inorg. Chem., 2020, 59: 16301-16318  doi: 10.1021/acs.inorgchem.0c02084

    4. [4]

      MENG G, WEI T R, LIU W J, LI W B, ZHANG S S, LIU W X, LIU Q, BAO H H, LUO J, LIU X J. NiFe layered double hydroxide nanosheet array for high-efficiency electrocatalytic reduction of nitric oxide to ammonia[J]. Chem. Commun., 2022, 58: 8097-8100  doi: 10.1039/D2CC02463B

    5. [5]

      LI X F, MA D D, CAO C S, ZOU R Q, XU Q, WU X T, ZHU Q L. Inlaying ultrathin bimetallic MOF nanosheets into 3D ordered macroporous hydroxide for superior electrocatalytic oxygen evolution[J]. Small, 2019, 15: 1902218  doi: 10.1002/smll.201902218

    6. [6]

      HOU J R, PENG X Y, SUN J Q, ZHANG S S, LIU Q, WANG X Z, LUO J, LIU X J. Accelerating hydrazine-assisted hydrogen production kinetics with Mn dopant modulated CoS2 manowire arrays[J]. Inorg. Chem. Front., 2022, 9: 3047-3058  doi: 10.1039/D2QI00083K

    7. [7]

      LI L F, WANG P T, HUANG X Q, YOUNG D J, WANG H F, BRAUNSTEIN P, LANG J P. Large-scale, bottom-up synthesis of binary metal-organic framework nanosheets for efficient water oxidation[J]. Angew. Chem.‒Int. Edit., 2019, 58: 7051-7056  doi: 10.1002/anie.201902588

    8. [8]

      YANG M S, LIU Y F, SUN J Q, ZHANG S S, LIU X J, LUO J. Integration of partially phosphatized bimetal centers into trifunctional catalyst for high-performance hydrogen production and flexible Zn-air battery[J]. Sci. China Mater., 2022, 65: 1176-1186  doi: 10.1007/s40843-021-1902-2

    9. [9]

      LI L F, SHAO P, HUANG X Q, LANG J P. Nanoscale trimetallic metal organic frameworks enable efficient oxygen evolution electrocatalysis[J]. Angew. Chem.‒Int. Edit., 2018, 57: 1888-1892  doi: 10.1002/anie.201711376

    10. [10]

      WU L L, WANG Q S, LI J, LONG Y, LIU Y, SONG S Y, ZHANG H J. Co9S8 nanoparticles-embedded N/S-codoped carbon nanofibers derived from meal-organic framework-wrapped CdS nanowires for efficient oxygen evolution reaction[J]. Small, 2018, 14: 1704035  doi: 10.1002/smll.201704035

    11. [11]

      XU Y Y, DENG P L, CHEN G D, CHEN Y X, YAN Y, QI K, LIU H F, XIA B Y. 2D nitrogen-doped carbon nanotubes/graphene hybrid as bifunctional oxygen electrocatalyst for long-life rechargeable Zn-air batteries[J]. Adv. Funct. Mater., 2020, 30: 1906081  doi: 10.1002/adfm.201906081

    12. [12]

      BAI Z Y, HENG J M, ZHANG Q, YANG L, CHANG F F. Rational design of dodecahedral MnCo2O4.5 hollowed-out nanocages as efficient bifunctional electrocatalysts for oxygen reduction and evolution[J]. Adv. Energy Mater., 2018, 8: 1802390  doi: 10.1002/aenm.201802390

    13. [13]

      GUO X Z, ZHANG J, LIN B, XIONG G Z, ZHANG X X, LI Z C, GUI L, SI Y, CHEN S S, QIU Z. A bifunctional 3D porous MOF with potential for fluorescence sensing of picric acid and natural gas purification[J]. J. Mol. Struct., 2024, 130: 137569

    14. [14]

      GUO X Z, LI B, XIONG G Z, LIN B, GUI L C, ZHANG X X, QIU Z, KRISHNA R, WANG X, YAN X, CHEN S S. A stable ultramicroporous Cd(Ⅱ)-MOF with accessible oxygen sites for efficient separation of light hydrocarbons with high methane production[J]. Sep. Purif. Technol., 2023, 334: 125987

    15. [15]

      GUO X Z, LIN B, XIONG G Z, KRISHNA R, ZHANG Z R, LIU Q Z, ZHANG Z X, FAN L, ZHANG J, LI B W. Construction of negative electrostatic sugared gourd pore within nickel-based metal-organic framework for one-step purification acetylene from ethylene and carbon dioxide mixture[J]. Chem. Eng. J., 2024, 498: 154734  doi: 10.1016/j.cej.2024.154734

    16. [16]

      XIONG G Z, ZHANG J, LIN B, DU Y T, LI B, GUI L C, ZHANG X X, QIU Z, GUO X Z, CHEN S S. A stable paddle-wheel Co-MOF (FNU-2) for the efficient separation of light hydrocarbons[J]. Microporous Mesoporous Mat., 2023, 366: 112970

    17. [17]

      ZHANG J, GUO X Z, LIN B, XIONG G Z, WANG H S, ZHANG M, FAN L W, LI B W, CHEN S S. Efficient adsorption separation of methane from C2-C3 hydrocarbons in a Co(Ⅱ)-nodes metal-organic framework[J]. Chin. J. Chem. Eng., 2024, 69: 192-198  doi: 10.1016/j.cjche.2024.02.001

    18. [18]

      ZHANG X X, GUO X Z, CHEN S S, KANG H W, ZHAO Y, GAO J X, XIONG G Z, HOU L. A stable microporous framework with multiple accessible adsorption sites for high capacity adsorption and efficient separation of light hydrocarbons[J]. Chem. Eng. J., 2023, 466: 143170  doi: 10.1016/j.cej.2023.143170

    19. [19]

      JI W J, WANG D, WANG G J, SUN X L, FU Y L. High performance supercapacitors constructed with isomorphic MOFs doped graphene oxide electrode materials[J]. Chinese J. Inorg. Chem., 2021, 37(11): 1931-1942

    20. [20]

      NIU B T, XIA W N, LAI S Q, GUO H X, CHEN Z X. Solvent-controlled morphology of Ni-BTC and Ni-BDC metal-organic frameworks for supercapacitors[J]. Chinese J. Inorg. Chem., 2022, 38(8): 1643-1654

    21. [21]

      SU L X, WANG X M, JIANG Q Y, ZHANG H M, LU Y W, LIU Q. A two-dimensional Co-based coordination polymer [KCo(pa)(OH)]n as the electrode material of supercapacitors with higher-capacity[J]. Chinese J. Inorg. Chem., 2023, 39(8): 1481-1488

    22. [22]

      DU Y Q, XIAO P, YUAN J, CHEN J W. Research progress of graphene-based materials on flexible supercapacitors[J]. Coatings, 2020, 10(9): 892  doi: 10.3390/coatings10090892

    23. [23]

      WANG C, HU K, LI W J, WANG H Y, LI H, ZUO Y, ZHAO C C, LI Z, YU M, TAN P C, LI Z. Wearable wire-shaped symmetric supercapacitors based on activated carbon-coated graphite fibers[J]. ACS Appl. Mater. Interfaces, 2018, 10(40): 34302-34310  doi: 10.1021/acsami.8b12279

    24. [24]

      KANG C S, KO Y I, FUJISAWA K, YOKOKAWA T, KIM J H, HAN J H, WEE J H, KIM Y A, MURAMATSU H, HAYASHI T. Hybridized double-walled carbon nanotubes and activated carbon as free-standing electrode for flexible supercapacitor applications[J]. Carbon Lett., 2020, 30(5): 527-534  doi: 10.1007/s42823-020-00122-4

    25. [25]

      GHANADHYAM G, JEONG H K. Plasma treated carbon nanofiber for flexible supercapacitors[J]. J. Energy Storage, 2021, 40: 102806  doi: 10.1016/j.est.2021.102806

    26. [26]

      WANG C, LIU Q H, QI C Y, WANG Z Y, ZHAO X L, YANG X W. Synthesis and supercapacitor performances of 0D/2D MXene composite membrane[J]. Chinese J. Inorg. Chem., 2022, 38(9): 1707-1715

    27. [27]

      ASBANI ASBANI B, ROBERT K, ROUSSEL P, BROUSSE T, LETHIEN C. Asymmetric micro-supercapacitors based on electrodeposited RuO2 and sputtered VN films[J]. Energy Storage Mater., 2021, 37: 207-214  doi: 10.1016/j.ensm.2021.02.006

    28. [28]

      YU F, PANG L, WANG H X. Preparation of mulberry-like RuO2 electrode material for supercapacitors[J]. Rare Met., 2021, 40(2): 440-447  doi: 10.1007/s12598-020-01561-8

    29. [29]

      ZHOU Y, CHENG X Y, TYNAN B, SHA Z, HUANG F, ISLAM M S, ZHANG J, RIDER A N, DAI L M, CHU D W, WANG D W, HAN Z J, WANG C H. High-performance hierarchical MnO2/CNT electrode for multifunctional supercapacitors[J]. Carbon, 2021, 184: 504-513  doi: 10.1016/j.carbon.2021.08.051

    30. [30]

      SWAIN N, MITR A, SARAVANAKUMAR B, BALASINGAM S K, MOHANTY S, NAYAK S K, RAMADOSS A. Construction of three-dimensional MnO2/Ni network as an efficient electrode material for high performance supercapacitors[J]. Electrochim. Acta, 2020, 342: 136041  doi: 10.1016/j.electacta.2020.136041

    31. [31]

      ZHANG H, HAN X R, GAN R, GUO Z H, NI Y H, ZHANG L. A facile biotemplate-assisted synthesis of mesoporous V2O5 microtubules for high performance asymmetric supercapacitors[J]. Appl. Surf. Sci., 2020, 511: 145527  doi: 10.1016/j.apsusc.2020.145527

    32. [32]

      TANG M, WU Y T, YANG J H, WANG H X, LIN T, XUE Y H. Graphene/tungsten disulfide core-sheath fibers: High-performance electrodes for flexible all-solid-state fiber-shaped supercapacitors[J]. J. Alloy. Compd., 2021, 858: 157747  doi: 10.1016/j.jallcom.2020.157747

    33. [33]

      MAO Y L, SHAN B Y, YU J, LIU X X, CHU J Y, MA X Y, LI M, ZHENG Y M, ZHU B L, ZUO M H, CUI S X. A novel naphthalene diimide-based compound: Synthesis, photochromism, ammonia vapor and triethylamine detection[J]. J. Solid State Chem., 2024, 338: 124902  doi: 10.1016/j.jssc.2024.124902

    34. [34]

      FOMINYKH K, FECKL J M, SICKINGER J, DÖBLLINGER M, BÖCKLEIN S, ZIEGLER J, PETER L, RATHOUSKY J, SCHEIDT E W, BEIN T, ROHLFING D F. Ultrasmall dispersible crystalline nickel oxide nanoparticles as high-performance catalysts for electrochemical water splitting[J]. Adv. Funct. Mater., 2014, 24: 3123-3129  doi: 10.1002/adfm.201303600

    35. [35]

      MA Y D, DAI X P, LIU M Z, YONG J X, QIAO H Y, JIN A X, LI Z Z, HUANG X L, WANG H, ZHANG X. Strongly coupled FeNi alloys/NiFe2O4@carbonitride layers assembled microboxes for enhanced oxygen evolution reaction[J]. ACS Appl. Mater. Interfaces, 2016, 8: 34396-34404  doi: 10.1021/acsami.6b11821

    36. [36]

      HAN Y J, ZHAI J F, ZHANG L L, DONG S J. Direct carbonization of cobalt-doped NH2-MIL-53(Fe) for electrocatalysis of oxygen evolution reaction[J]. Nanoscale, 2016, 8: 1033-1039  doi: 10.1039/C5NR06626C

    37. [37]

      LI M, XIONG Y P, LIU X T, BO X J, ZHANG Y F, HAN C, GUO L P. Facile synthesis of electrospun MFe2O4 (M=Co, Ni, Cu, Mn) spinel nanofibers with excellent electrocatalytic properties for oxygen evolution and hydrogen peroxide reduction[J]. Nanoscale, 2015, 7: 8920-8930  doi: 10.1039/C4NR07243J

    38. [38]

      GONG M, LI Y G, WANG H L, LIANG Y Y, WU J Z, ZHOU J G, WANG J, REGIER T, WEI F, DAI H J. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation[J]. J. Am. Chem. Soc., 2013, 135: 8452-8455  doi: 10.1021/ja4027715

    39. [39]

      JEONG B, SHIN D, LEE J K, KIM D H, KIM Y D, LEE J. The influence of a fibrous carbon envelope on the formation of CoFe nanoparticles for durable electrocatalytic oxygen evolution[J]. Phys. Chem. Chem. Phys., 2014, 16: 13807-13813  doi: 10.1039/C4CP00385C

    40. [40]

      ROSALBINO F, DELSANTE S, BORZONE G, SCAVINO G. Electrocatalytic activity of crystalline Ni-Co-M (M=Cr, Mn, Cu) alloys on the oxygen evolution reaction in an alkaline environment[J]. Int. J. Hydrog. Energy, 2013, 38: 10170-10177  doi: 10.1016/j.ijhydene.2013.06.035

    41. [41]

      ZENG L, HUANG L, WANG Z H, WEI J W, HUANG K, LIN W H, DUAN C Y, HAN G. Self-assembled metal-organic framework stabilized organic cocrystals for biological phototherapy[J]. Angew. Chem.‒Int. Edit., 2021, 60: 23569-23573  doi: 10.1002/anie.202108076

    42. [42]

      DONG X, XIN Z, HE D, ZHANG J L, LAN Y Q, ZHANG Q F, CHEN Y. Boosting CO2 electroreduction performance over fullerene-modified MOF-545-Co promoted by π-π interaction[J]. Chin. Chem. Lett. 2023, 34: 107459  doi: 10.1016/j.cclet.2022.04.057

    43. [43]

      ZHENG D J, GÖRLIN M, MCORMACK K, KIM J, PENG J, XU H, MA X, LEBEAU J M, FISCHER R A, ROMÁN-LESHKOV Y, SHAO-HORN Y. Linker-dependent stability of metal-hydroxide organic frameworks for oxygen evolution[J]. Chem. Mat., 2023, 35: 5017-5031  doi: 10.1021/acs.chemmater.3c00316

    44. [44]

      PRAKASH S, KAMLESH, TAVAR D, BANDYOPADHYAY S, SINGHAI S, SRIVASTAVA A K, SINGH A. Graphene supported pillared Ni-Co metal-organic framework as an efficient electrocatalyst for the water oxidation reaction[J]. ACS Appl. Energy Mater., 2023, 6: 8422-8433  doi: 10.1021/acsaem.3c01117

  • 加载中
    1. [1]

      Ruolin CHENGYue WANGFei YANGHuagen LIANGShijian LU . Application of metal-organic frameworks (MOFs) in photocatalytic CO2 cycloaddition reaction: A mini review. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2429-2440. doi: 10.11862/CJIC.20250242

    2. [2]

      Haoying ZHAILanzong WENWenjie LIAOQin LIWenjun ZHOUKun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320

    3. [3]

      Shaohua YANGNa'na GAOYaqiong GONG . Metal-organic framework-templated construction of FeOOH@CoMoO4/nickel foam heterostructure for enhanced oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2175-2185. doi: 10.11862/CJIC.20250218

    4. [4]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    5. [5]

      Hong YANGShengjuan SHAOBaoyi LIYifan LUNa LI . CoMoNiO-S/nickel foam heterostructure composite for efficient oxygen evolution catalysis performance. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 203-215. doi: 10.11862/CJIC.20250041

    6. [6]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    7. [7]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    8. [8]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    9. [9]

      Jiaxuan YANGChenfa DENGJingyang LIUChenzexi XUHongxin CHENYahui ZHUYing LIShuhua WANGRongping ZHOUChao CHEN . Advances in selective hydrogenation of α, β-unsaturated aldehydes/ketones catalyzed by metal-organic frameworks and their derivatives: A review. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1973-2010. doi: 10.11862/CJIC.20250175

    10. [10]

      Wei GUOZhuoyi GUOXiaoxin LIWei ZHANGJuanzhi YANTingting GUO . Electrochemical sensor based on a Co(Ⅱ)-based metal-organic framework for the detection of Cd2+ and Pb2+. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1889-1902. doi: 10.11862/CJIC.20250097

    11. [11]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    12. [12]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    13. [13]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    14. [14]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    15. [15]

      Rongxin ZhuShengsheng YuXuanzong YangRuyu ZhuHui LiuKaikai NiuLingbao Xing . Construction of pyrene-based hydrogen-bonded organic frameworks as photocatalysts for photooxidation of styrene in water. Chinese Chemical Letters, 2024, 35(10): 109539-. doi: 10.1016/j.cclet.2024.109539

    16. [16]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    17. [17]

      Zhongjie SongNannan ZhangJun YuHuiyu SunZhengying WuYukou Du . Growth of Ce-doped NiCo-LDHs on tin dioxide-modified nickel foam as oxygen evolution reaction catalyst electrode. Chinese Chemical Letters, 2026, 37(1): 111804-. doi: 10.1016/j.cclet.2025.111804

    18. [18]

      Fenglin WangChengwei KuangZhicheng ZhengDan WuHao WanGen ChenNing ZhangXiaohe LiuRenzhi Ma . Noble metal clusters substitution in porous Ni substrate renders high mass-specific activities toward oxygen evolution reaction and methanol oxidation reaction. Chinese Chemical Letters, 2025, 36(6): 109989-. doi: 10.1016/j.cclet.2024.109989

    19. [19]

      Dixing NiJiarui QiZhi DengDong DingRui WangWenjie ZhouSisi ZhouYang SunShuai LiZhaoxiang Wang . Voltage design and transport channel optimization of anti-perovskite cathode materials: A density functional theory study. Chinese Chemical Letters, 2025, 36(12): 110683-. doi: 10.1016/j.cclet.2024.110683

    20. [20]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

Metrics
  • PDF Downloads(0)
  • Abstract views(58)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return