Citation: Jiahe LIU, Gan TANG, Kai CHEN, Mingda ZHANG. Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023 shu

Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries

  • Corresponding author: Mingda ZHANG, matchlessjimmy@163.com
  • Received Date: 18 January 2025
    Revised Date: 13 March 2025

Figures(8)

  • To solve the problem of poor low-temperature performance of lithium-ion batteries (LIBs), an effective method was proposed to improve the low-temperature performance of batteries by adjusting the electrolyte additive formulation. Among them, the additive formulation of lithium tetrafluoroborate (LiBF4)+vinylidene carbonate (VC)+1, 3-propane sulfonate lactone (PS)+fluorinated ethylene carbonate (FEC) had a better protection effect on the electrode. It can improve the electrochemical performance of the battery. The results showed that the target electrolyte had good low-temperature performance, with 0.2C first discharge specific capacities of 144.65 and 133.05 mAh·g-1 for the electrode at -20 and -40 ℃, respectively, and good cycling stability. It is shown that the use of multifunctional additives can significantly improve the diffusion rate of lithium ions and promote the release of lithium ions on the electrode surface. Meanwhile, the better film-forming performance can also reduce the polarization of the battery and ultimately achieve high-capacity and high-stability battery performance under low-temperature conditions.
  • 加载中
    1. [1]

      HARPER G, SOMMERVILLE R, KENDRICK E, DRISCOLL L, SLATER P, STOLKIN R, WALTON A, CHRISTENSEN P, HEIDRICH O, LAMBERT S, ABBOTT A, RYDER K, GAINES L, ANDERSON P. Recycling lithium-ion batteries from electric vehicles[J]. Nature, 2019,575(7781):75-86.

    2. [2]

      LU Y, HOU X S, MIAO L C, LI L, SHI R J, LIU L J, CHEN J. Cyclohexanehexone with ultrahigh capacity as cathode materials for lithiumion batteries[J]. Angew. Chem.-Int. Edit., 2019,58(21):7020-7024.

    3. [3]

      XIE J, LU Y C. A retrospective on lithiumion batteries[J]. Nat. Commun., 2020,11(1)2499.

    4. [4]

      SHI J L, EHTESHAMI N, MA J L, ZHANG H, LIU H D, ZHANG X, LI J, PAILLARD E. Improving the graphite/electrolyte interface in lithium ion battery for fast charging and low temperature operation: Fluorosulfonyl isocyanate as electrolyte additive[J]. J. Power Sources, 2019,429:67-74.

    5. [5]

      WANG C S. Electrolyte design for ultra-stable, low-temperature lithium-ion batteries[J]. Matter, 2023,6(8):2610-2612. doi: 10.1016/j.matt.2023.07.006

    6. [6]

      MENG F B, XIONG X Y, TAN L, YUAN B, HU R Z. Strategies for improving electrochemical reaction kinetics of cathode materials for subzero temperature Liion batteries: A review[J]. Energy Storage Mater., 2022,44:390-407.

    7. [7]

      WANG B, YAN M Y. Research on the improvement of lithium ion battery performance at low temperatures based on electromagnetic induction heating technology[J]. Energies, 2023,16(23)7780. doi: 10.3390/en16237780

    8. [8]

      ZHANG C H, HUO S D, SU B, BI C J, ZHANG C, XUE W D. Challenges of film-forming additives in low-temperature lithium-ion batteries: A review[J]. J. Power Sources, 2024,606234559. doi: 10.1016/j.jpowsour.2024.234559

    9. [9]

      ASSAT G, TARASCON J M. Fundamental understanding and practical challenges of anionic redox activity in Li ion batteries[J]. Nat. Energy, 2018,3(5):373-386. doi: 10.1038/s41560-018-0097-0

    10. [10]

      KOLETI U R, ZHANG C, MALIK R, DINH T Q, MARCO J. The development of optimal charging strategies for lithium-ion batteries to prevent the onset of lithium plating at low ambient temperatures[J]. J. Energy Storage, 2019,24100798. doi: 10.1016/j.est.2019.100798

    11. [11]

      XIAO P, YUN X R, CHEN Y F, GUO X W, GAO P, ZHOU G M, ZHENG C M. Insights into the solvation chemistry in liquid electrolytes for lithium based rechargeable batteries[J]. Chem. Soc. Rev., 2023,52(15):5255-5316. doi: 10.1039/D3CS00151B

    12. [12]

      HUBBLE D, BROWN D E, ZHAO Y Z, FANG C, LAU J, McCLOSKEY B D, LIU G. Liquid electrolyte development for lowtemperature lithium-ion batteries[J]. Energy Environ. Sci., 2022,15(2):550-578.

    13. [13]

      MING J, CAO Z, WU Y Q, WAHYUDI W, WANG W X, GUO X R, CAVALLO L, HWANG J Y, SHAMIM A, LI L J, SUN Y K, ALSHAREEF H N. New insight on the role of electrolyte additives in rechargeable lithium ion batteries[J]. ACS Energy Lett., 2019,4(11):2613-2622.

    14. [14]

      LV W X, ZHU C J, CHEN J, OU C X, ZHANG Q, ZHONG S W. High performance of low-temperature electrolyte for lithium-ion batteries using mixed additives[J]. Chem. Eng. J., 2021,418129400.

    15. [15]

      WANG Y K, LI Z M, HOU Y P, HAO Z M, ZHANG Q, NI Y X, LU Y, YAN Z H, ZHANG K, ZHAO Q, LI F J, CHEN J. Emerging electrolytes with fluorinated solvents for rechargeable lithium-based batteries[J]. Chem. Soc. Rev., 2023,52(8):2713-2763. doi: 10.1039/D2CS00873D

    16. [16]

      FAN X L, JI X, CHEN L, CHEN J, DENG T, HAN F D, YUE J, PIAO N, WANG R X, ZHOU X Q, XIAO X Z, CHEN L X, WANG C S. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents[J]. Nat. Energy, 2019,4(10):882-890.

    17. [17]

      ZHENG J M, YAN P F, MEI D H, ENGELHARD M H, CARTMELL S S, POLZIN B J, WANG C M, ZHANG J G, XU W. Highly stable operation of lithium metal batteries enabled by the formation of a transient high-concentration electrolyte layer[J]. Adv. Energy Mater., 2016,6(8)1502151.

    18. [18]

      YANG B W, ZHANG H, YU L, FAN W Z, HUANG D H. Lithium difluorophosphate as an additive to improve the low temperature performance of LiNi0.5Co0.2Mn0.3O2/graphite cells[J]. Electrochim. Acta, 2016,221:107-114.

    19. [19]

      HEKMATFAR M, HASA I, EGHBAL R, CARVALHO D V, MORETTI A, PASSERINI S. Effect of electrolyte additives on the LiNi0.5Mn0.3Co0.2O2 surface film formation with lithium and graphite negative electrodes[J]. Adv. Mater. Interfaces, 2020,7(1)1901500.

    20. [20]

      ZHENG J X, LU J, AMINE K, PAN F. Depolarization effect to enhance the performance of lithium ion batteries[J]. Nano Energy, 2017,33:497-507.

    21. [21]

      PHAM H Q, CHUNG G J, HAN J, HWANG E H, KWON Y G, SONG S W. Interface stabilization via lithium bis (fluorosulfonyl) imide additive as a key for promoted performance of graphite||LiCoO2 pouch cell under -20 ℃[J]. J. Chem. Phys., 2020,152(9)094709.

    22. [22]

      LIN Y C, YUE X P, ZHANG H, YU L, FAN W Z, XIE T. Using phenyl methanesulfonate as an electrolyte additive to improve performance of LiNi0.5Co0.2Mn0.3O2/graphite cells at low temperature[J]. Electrochim. Acta, 2019,300:202-207.

  • 加载中
    1. [1]

      Zhuo HanDanfeng ZhangHaixian WangGuorui ZhengMing LiuYanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034

    2. [2]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    3. [3]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    4. [4]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    5. [5]

      Rui YangHui LiQingfei MengWenjie LiJiliang WuYongjin FangChi HuangYuliang Cao . Influence of PC-based Electrolyte on High-Rate Performance in Li/CrOx Primary Battery. Acta Physico-Chimica Sinica, 2024, 40(9): 2308053-0. doi: 10.3866/PKU.WHXB202308053

    6. [6]

      Jiandong LiuZhijia ZhangKamenskii MikhailVolkov FilippEliseeva SvetlanaJianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2308048-0. doi: 10.3866/PKU.WHXB202308048

    7. [7]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    8. [8]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    9. [9]

      Hao ChenDongyue YangGang HuangXinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059

    10. [10]

      Da WangXiaobin YinJianfang WuYaqiao LuoSiqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029

    11. [11]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    12. [12]

      Caiyun JinZexuan WuGuopeng LiZhan LuoNian-Wu Li . Phosphazene-based flame-retardant artificial interphase layer for lithium metal batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100094-0. doi: 10.1016/j.actphy.2025.100094

    13. [13]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    14. [14]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    15. [15]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    16. [16]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    17. [17]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    18. [18]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    19. [19]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    20. [20]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

Metrics
  • PDF Downloads(11)
  • Abstract views(1150)
  • HTML views(151)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return