Citation: Hailang JIA, Yujie LU, Pengcheng JI. Preparation and properties of nitrogen and phosphorus co-doped graphene carbon aerogel supported ruthenium electrocatalyst for hydrogen evolution reaction[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(11): 2327-2336. doi: 10.11862/CJIC.20250021 shu

Preparation and properties of nitrogen and phosphorus co-doped graphene carbon aerogel supported ruthenium electrocatalyst for hydrogen evolution reaction

  • Corresponding author: Hailang JIA, jiahailang85@126.com
  • Received Date: 17 January 2025
    Revised Date: 16 September 2025

Figures(6)

  • Using common inexpensive industrial graphene oxide (GO) as a raw material, N/P co-doped reduced graphene oxide (N/P/rGO) was prepared by pyrolysis of urea and NaH2PO4 at high temperature. The N/P co-doping optimized the electronic structure of rGO and created more active sites. Furthermore, the graphene aerogel with a three-dimensional network structure was constructed by the hydrothermal reduction method, and low-content ruthenium nanoparticles were loaded at the same time, so as to achieve efficient hydrogen evolution catalytic reaction. Benefiting from N/P codoping, three-dimensional graphene aerogel structure, and low content of hyperdispersed ruthenium nanoparticles, Ru/N/P/rGO showed excellent HER catalytic reaction performance and had good pH adaptability. In alkaline conditions, the overpotential of Ru/N/P/rGO at 10 mA·cm-2 was only 9 mV, and the Tafel slope was as low as 42 mV·dec-1, greatly surpassing the performance of commercial Pt/C (30 mV, 10 mA·cm-2). Under acidic conditions, the overpotential of Ru/N/P/rGO at 10 mA·cm-2 was 57 mV, and the Tafel slope was 47 mV·dec-1. It also had a high electrochemically active area and low charge transfer impedance, and its performance was almost identical to that of commercial Pt/C.
  • 加载中
    1. [1]

      ZHAO Z Q, CHEN H, ZHANG W Y, YI S, CHEN H L, SU Z, NIU B, ZHANG Y Y, LONG D H. Defect engineering in carbon materials for electrochemical energy storage and catalytic conversion[J]. Mater. Adv., 2023,4:835-867. doi: 10.1039/D2MA01009G

    2. [2]

      WANG Q, YE M Z, HE G Y, CHEN H Q. Sulfur vacancies modified CuCo2S4 popcorn-like nanoballs loaded reduced graphene oxide as bifunctional electrocatalysts for electrochemical water splitting[J]. J. Alloy. Compd., 2024,1009176948. doi: 10.1016/j.jallcom.2024.176948

    3. [3]

      LUAN X Y, GUO L F, LI H D, XIAO W P, XU G R, CHEN D H, LI C X, DU Y M, WU Z X, WANG L. Ultrafast quasi‐solid‐state microwave construction of spongy cobalt-molybdenum phosphide for hydrogen production over wide pH range[J]. Small, 2024,202404830. doi: 10.1002/smll.202404830

    4. [4]

      LI M Y, YU Z R, SUN Z L, LIU Y C, SHA S M, LI J C, GE R Y, DAI L M, LIU B, FU Q Q, LI W X. An efficient hydrogen evolution catalyst constructed using Pt-modified Ni3S2/MoS2 with optimized kinetics across the full pH range[J]. Nanoscale, 2025,17:3189-3202. doi: 10.1039/D4NR03811H

    5. [5]

      WANG H Y, CHEN C, SHEN J X, OLU P Y, LI L H, DONG W, FAN R L, SHEN M R. Self-supported Ni/NiO heterostructures with a controlled reduction protocol for enhanced industrial alkaline hydrogen evolution[J]. Chem. Commun., 2025,61:278-281. doi: 10.1039/D4CC05466K

    6. [6]

      JIN L, XU H, WANG K, LIU Y, QIAN X Y, CHEN H Q, HE G Y. Modulating built-in electric field via Br induced partial phase transition for robust alkaline freshwater and seawater electrolysis[J]. Chem. Sci., 2025,16:329-337. doi: 10.1039/D4SC06673A

    7. [7]

      CHEN K, WU F S, XIAO S, ZHANG J B, ZHU L H. PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis[J]. Chinese J. Inorg. Chem., 2024,40:1357-1367. doi: 10.11862/CJIC.20230350

    8. [8]

      LI Y J, WANG X, ZHOU Y C. Ru loaded on NiFe layered double hydroxide nanosheet arrays for boosting alkaline electrocatalytic hydrogen evolution and oxygen evolution abilities[J]. Chinese J. Inorg. Chem., 2023,39:1905-1913. doi: 10.11862/CJIC.2023.150

    9. [9]

      GONG S M, MENG Y, JIN Z Y, HSU H Y, DU M S, LIU F. Recent progress on the stability of electrocatalysts under high current densities toward industrial water splitting[J]. ACS Catal., 2024,14:14399-14435. doi: 10.1021/acscatal.4c03700

    10. [10]

      JAMESH M I, HU D Q, WANG J, NAZ F, FENG J P, YU L, CAI Z, COLMENARES J C, LEE D J, CHU P K, HSU H Y. Recent advances in noble metal-free electrocatalysts to achieve efficient alkaline water splitting[J]. J. Mater. Chem. A, 2024,12:11771-11820. doi: 10.1039/D3TA07418H

    11. [11]

      MA W, ZHANG X Y, LI W Y, JIAO M G, ZHANG L L, MA R Z, ZHOU Z. Advanced Pt-based electrocatalysts for the hydrogen evolution reaction in alkaline medium[J]. Nanoscale, 2023,15:11759-11776. doi: 10.1039/D3NR01940C

    12. [12]

      ZHANG Z, JIANG C, LI P, FENG Q, ZHAO Z L, YAO K G, FAN J T, LI H, WANG H J. Pt atoms on doped carbon nanosheets with ultrahigh N content as a superior bifunctional catalyst for hydrogen evolution/oxidation[J]. Sustain. Energ. Fuels, 2021,5:532-539. doi: 10.1039/D0SE01516D

    13. [13]

      TSOUNIS C, SUBHASH B, KUMAR P V, BEDFORD N M, ZHAO Y F, SHENOY J, MA Z P, ZHANG D, TOE C Y, CHEONG S, TILLEY R D, LU X Y, DAI L M, HAN Z J, AMAL R. Pt single atom electrocatalysts at graphene edges for efficient alkaline hydrogen evolution[J]. Adv. Funct. Mater., 2022,322203067. doi: 10.1002/adfm.202203067

    14. [14]

      CHANG J W, SU K H, PAO C W, TSAI J J, SU C J, CHEN J L, LYU L M, KUO C H, SU A C, YANG H C, LAI Y H, JENG U S. Arrayed Pt single atoms via phosphotungstic acids intercalated in silicate nanochannels for efficient hydrogen evolution reactions[J]. ACS Nano, 2024,18:1611-1620. doi: 10.1021/acsnano.3c09656

    15. [15]

      LIN C X, HUANG Z Q, ZHANG Z Y, ZENG T, CHEN R Z, TAN Y Y, WU W, MU S C, CHENG N C. Structurally ordered Pt3Co nanoparticles anchored on N-doped graphene for highly efficient hydrogen evolution reaction[J]. ACS Sustain. Chem. Eng., 2020,8:16938-16945. doi: 10.1021/acssuschemeng.0c06547

    16. [16]

      ZHANG M Y, ZHOU B W, GUO L F, LI H D, XIAO W P, XU G R, CHEN D H, LI C X, DU Y M, WU Z X, WANG L. Tailoring electronic environments of dispersed Ru sites for efficient alkaline hydrogen evolution[J]. Inorg. Chem. Front., 2024,11:5884-5893.

    17. [17]

      LI J S, HUANG M J, ZHOU Y W, CHEN X N, YANG S, ZHU J Y, LIU G D, MA L J, CAI S H, HAN J Y. RuP2-based hybrids derived from MOFs: Highly efficient pH-universal electrocatalysts for the hydrogen evolution reaction[J]. J. Mater. Chem. A, 2021,9:12276-12282. doi: 10.1039/D1TA01868J

    18. [18]

      ZHOU H B, HAO X, GUAN J X, DENG Y L, WEI Z, LIU Y S, ZHU G X. Coordination tuning of Ni/Fe complex-based electrocatalysts for enhanced oxygen evolution[J]. Inorg. Chem. Front., 2024,11:8953-8953. doi: 10.1039/D4QI90086C

    19. [19]

      CHENG S A, WU W, LI L X, SU Y Q, JIN B C, LI Y X, YU Z, GU R N. Synthesis of P-(NiCo)CO3/TiO2/Ti self-supported electrode with high catalytic activity and stability for hydrogen evolution[J]. Small Methods, 2024,82301771.

    20. [20]

      WANG Y, LI X P, HUANG Z, WANG H Z, CHEN Z L, ZHANG J F, ZHENG X R, DENG Y D, HU W B. Amorphous Mo‑doped NiS0.5Se0.5 nanosheets@crystalline NiS0.5Se0.5 nanorods for high current-density electrocatalytic water splitting in neutral media[J]. Angew. Chem. ‒Int. Edit., 2023,62e202215256. doi: 10.1002/anie.202215256

    21. [21]

      LI Y Q, CHEN J Y, WANG Z A, CHEN S R. 3D hierarchical carbon-supported ultrafine Ru nanoparticles for pH universal hydrogen evolution reactions[J]. ACS Appl. Nano Mater., 2024,7:7555-7561. doi: 10.1021/acsanm.4c00251

    22. [22]

      HAO Y R, XUE H, SUN J, GUO N K, SONG T S, SUN J W, WANG Q. Tuning the electronic structure of CoP embedded in N-doped porous carbon nanocubes via Ru doping for efficient hydrogen evolution[J]. ACS Appl. Mater. Interfaces, 2021,13:56035-56044. doi: 10.1021/acsami.1c14387

    23. [23]

      JI P C, TENG Y, LI H C, GUAN M Y, JIA H L. Honeycomb-like hollow carbon loaded with ruthenium nanoparticles as high‐ performance HER electrocatalysts[J]. Sustain. Energ. Fuels, 2024,8:82-89. doi: 10.1039/D3SE01343J

    24. [24]

      LIANG X, FU N H, YAO S C, LI Z, LI Y D. The progress and outlook of metal single-atom-site catalysis[J]. J. Am. Chem. Soc., 2022,144:18155-18174. doi: 10.1021/jacs.1c12642

    25. [25]

      ZOU X X, ZHANG Y. Noble metal-free hydrogen evolution catalysts for water splitting[J]. Chem. Soc. Rev., 2015,44:5148-5180. doi: 10.1039/C4CS00448E

    26. [26]

      SAINI R, NAAZ F, BASHAL A H, PANDIT A H, FAROOQ U. Recent advances in nitrogen-doped graphene-based heterostructures and composites: Mechanism and active sites for electrochemical ORR and HER[J]. Green Chem., 2024,26:57-102. doi: 10.1039/D3GC03576J

    27. [27]

      CAI M J, XU L, GUO J J, YANG X B, HE X X, HU P. Recent advances in metal-free electrocatalysts for the hydrogen evolution reaction[J]. J. Mater. Chem. A, 2024,12:592-612. doi: 10.1039/D3TA05901D

    28. [28]

      LI D H, CAI R S, ZHENG D Y, REN J, DONG C L, HUANG Y C, HAIGH S J, LIU X E, GONG F L, LIU Y M, LIU J, YANG D J. A sustainable route to ruthenium phosphide (RuP)/Ru heterostructures with electron-shuttling of interfacial Ru for efficient hydrogen evolution[J]. Adv. Sci., 2024,112309869. doi: 10.1002/advs.202309869

    29. [29]

      REN Z D, TIAN M J, CONG N, JIANG H C, JIANG H W, XIE Z Q, HAN J J, ZHU Y C. Promoting effect of amorphous support on ruthenium-based catalyst for electrochemical hydrogen evolution reaction[J]. Chem. Commun., 2022,58:13588-13591. doi: 10.1039/D2CC04669E

    30. [30]

      TONG Y, CHEN P Z. Nanostructure engineering of ruthenium‐ modified electrocatalysts for efficient electrocatalytic water splitting[J]. J. Mater. Chem. A, 2024,12:3844-3878. doi: 10.1039/D3TA07230D

    31. [31]

      KIBSGAARD J, CHORKENDORFF I. Considerations for the scaling-up of water splitting catalysts[J]. Nat. Energy, 2019,4:430-433. doi: 10.1038/s41560-019-0407-1

    32. [32]

      XI W G, YAN G, TAN H Q, XIAO L G, CHENG S H, KHAN S U, WANG Y H, LI Y G. Superaerophobic P-doped Ni(OH)2/NiMoO4 hierarchical nanosheet arrays grown on Ni foam for electrocatalytic overall water splitting[J]. Dalton Trans., 2018,47:8787-8793. doi: 10.1039/C8DT00765A

    33. [33]

      LI R, WEI Z D, GOU X L. Nitrogen and phosphorus dual-doped graphene/carbon nanosheets as bifunctional electrocatalysts for oxygen reduction and evolution[J]. ACS Catal., 2015,5:4133-4142. doi: 10.1021/acscatal.5b00601

    34. [34]

      TONG X, CHERIF M, ZHANG G X, ZHAN X X, MA J G, ALMESRATI A, VIDAL F, SONG Y J, CLAVERIE J P, SUN S H. N, P-codoped graphene dots supported on N-doped 3D graphene as metal-free catalysts for oxygen reduction[J]. ACS Appl. Mater. Interfaces, 2021,13:30512-30523. doi: 10.1021/acsami.1c03141

  • 加载中
    1. [1]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    2. [2]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    3. [3]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    4. [4]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    5. [5]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    6. [6]

      Yachao HUANGChuanwang ZENGGuiyong LIUJinming ZENGChao LIUXiaopeng QI . Oxygen vacancies and phosphorus doping enhanced metal-organic framework derived nitrogen-doped carbon-coated Co3O4 bifunctional electrocatalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2251-2260. doi: 10.11862/CJIC.20250133

    7. [7]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    8. [8]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    9. [9]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    10. [10]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    11. [11]

      Zhengyu ZhouHuiqin YaoYoulin WuTeng LiNoritatsu TsubakiZhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-0. doi: 10.3866/PKU.WHXB202312010

    12. [12]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    13. [13]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    14. [14]

      Yuanchun Pan Xinyun Lin Leyi Yang Wenya Hu Dekui Song Nan Liu . Artificial Intelligence Science Practice: Preparation of Electronic Skin by Chemical Vapor Deposition of Graphene. University Chemistry, 2025, 40(11): 272-280. doi: 10.12461/PKU.DXHX202412052

    15. [15]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    16. [16]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    17. [17]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    18. [18]

      Ruyan LiuZhenrui NiOlim RuzimuradovKhayit TurayevTao LiuLuo YuPanyong Kuang . Ni-induced modulation of Pt 5d-H 1s antibonding orbitals for enhanced hydrogen evolution and urea oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100159-0. doi: 10.1016/j.actphy.2025.100159

    19. [19]

      Shiqian WEIXinyu TIANHong LIUMaoxia CHENFan TANGQiang FANWeifeng FANYu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102

    20. [20]

      Chengxiao ZhaoZhaolin LiDongfang WuXiaofei Yang . SBA-15 templated covalent triazine frameworks for boosted photocatalytic hydrogen production. Acta Physico-Chimica Sinica, 2026, 42(1): 100149-0. doi: 10.1016/j.actphy.2025.100149

Metrics
  • PDF Downloads(0)
  • Abstract views(347)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return