Citation: Dan LUO, Xingcheng LIU, Dong LI, Tong CHANG. Metal-support interaction effects on CO activation over Con/SiO2 catalysts[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(11): 2337-2344. doi: 10.11862/CJIC.20250003 shu

Metal-support interaction effects on CO activation over Con/SiO2 catalysts

  • Corresponding author: Tong CHANG, luodan@ycu.edu.cn
  • Received Date: 17 February 2025
    Revised Date: 18 September 2025

Figures(8)

  • Employing the first-principles density functional theory (DFT), an in-depth investigation was conducted into the structure, electronic properties, and CO activity of hydroxylated SiO2(001) surface-supported Con (where n is the number of cobalt atoms, n=1-6) materials [Con/SiO2(001)]. Here, n=1 represents a single Co atom, while n=2-6 denotes Con clusters composed of n Co atoms. The findings revealed that the binding energy (Eb-Co5/SiO2(001)) of Co5/SiO2(001) was the highest at 1.88 eV, suggesting that the Co5 cluster exhibits the greatest stability when interfaced with the SiO2(001). A direct linear correlation (y=0.11x-0.23) was observed in the connection between Eb-Con/SiO2(001) and the average Bader charge (Qave-Bader) of the Con/SiO2(001). The greater Qave-Bader value transferred between the Con clusters and the SiO2 support, the stronger the binding and the higher the structural stability. As the Con cluster size increased, the d band center gradually moved away from the Fermi level, with the d band center energy for the Co5/SiO2(001) being the lowest at -0.96 eV. The most favorable reaction pathway for CO activation on the Co3/SiO2(001) is CO*+H*→CHO*→CH*+O*, with an effective energy barrier of 2.39 eV, whereas for Co5/SiO2(001), the optimal path is CO*→C*+O*, with an effective energy barrier of 1.19 eV, and Co5 cluster, the optimal path is CO*+H*→CHO*→CH*+O*, with an effective energy barrier of 2.72 eV. Notably, the introduction of Co5 clusters onto the hydroxylated SiO2 surface proves to be more conducive to the activation of CO. By employing differential charge analysis and crystal orbital hamilton population (COHP) calculations, it was discernible that in the Co3/SiO2(001)-CO, Co5/SiO2(001)-CO and Co5-CO, the transfer of electrons from Co to C amounted to 0.20, 0.15, and 0.24, respectively, the integrated COHP (ICOHP) values for the Co—C bond were -1.46, -0.91, and -1.70 eV, respectively, which are indicated a more robust interaction between C and Co in Co5-CO and Co3/SiO2(001)-CO compared to Co5/SiO2(001)-CO. Notably, the intense interaction between CO and Co in the latter hinders the activation of CO.
  • 加载中
    1. [1]

      SCHULZ H. Short history and present trends of Fischer-Tropsch synthesis[J]. Appl. Catal. A‒Gen., 1999,186:3-12. doi: 10.1016/S0926-860X(99)00160-X

    2. [2]

      DE KLERK A. Thermal upgrading of Fischer-Tropsch olefins[J]. Energy Fuels, 2005,19:1462-1467. doi: 10.1021/ef050049w

    3. [3]

      BRADY R C, PETTIT R. Mechanism of the Fischer-Tropsch reaction. The chain propagation step[J]. J. Am. Chem. Soc., 1981,103:1287-1289. doi: 10.1021/ja00395a081

    4. [4]

      IGLESIA E. Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts[J]. Appl. Catal. A‒Gen., 1997,161:59-78. doi: 10.1016/S0926-860X(97)00186-5

    5. [5]

      DEN OTTER J H, NIJVELD S R, DE JONG K P. Synergistic promotion of Co/SiO2 Fischer-Tropsch catalysts by niobia and platinum[J]. ACS Catal., 2016,6:1616-1623. doi: 10.1021/acscatal.5b02418

    6. [6]

      SUBRAMANIAN V, CHENG K, LANCELOT C, SVETLANA H, SéBASTIEN P, SIMONA M, OVIDIU E, MAYA M, VITALY V O, ANDREI Y K. Nanoreactors: An efficient tool to control the chain-length distribution in Fischer-Tropsch synthesis[J]. ACS Catal., 2016,6:1785-1792. doi: 10.1021/acscatal.5b01596

    7. [7]

      DONG C, LI R T, QU Z P, FAN Y M, WANG J Y, DU X Z, LIU C X, FENG X H, NING Y X, MU R T, FU Q, BAO X H. Oxide support inert in its interaction with metal but active in its interaction with oxide and vice versa[J]. J. Am. Chem. Soc., 2025,147(16):13210-13219. doi: 10.1021/jacs.4c17075

    8. [8]

      RENATA S, KAROLINA A C, PAWEL M, JACEK R, YANNICK M, LAETITIA V, SANDRA C, STANISLAW D. Fischer-Tropsch reaction on Co-containing microporous and mesoporous beta zeolite catalysts: The effect of porous size and acidity[J]. Catal. Today, 2020,354:109-122. doi: 10.1016/j.cattod.2019.05.004

    9. [9]

    10. [10]

      BEPARI S, LI X, ABROKWAH R, MOHAMMAD N, ARSLAN M, KUILA D. Co-Ru catalysts with different composite oxide supports for fischer-tropsch studies in 3D-printed stainless steel microreactors[J]. Appl. Catal. A‒Gen., 2020,608117838. doi: 10.1016/j.apcata.2020.117838

    11. [11]

      OHYAMA J, ABE D, HIRAYAMA A, IWAI H, TSUCHIMURA Y, SAKAMOTO K, IRIKURA M, NAKAMURA Y, YOSHIDA H, MACHIDA M, NISHIMURA S, YAMAMOTO T, MATSUMURA S, TAKAHASHI K. Selective oxidation of methane to formaldehyde over a silica-supported cobalt single-atom catalyst[J]. J. Phys. Chem. C, 2022,126:1785-1792. doi: 10.1021/acs.jpcc.1c08739

    12. [12]

      SAIB A M, CLAEYS M, VAN STEEN E. Silica supported cobalt Fischer-Tropsch catalysts: Effect of pore diameter of support[J]. Catal. Today, 2002,71(3/4):395-402.

    13. [13]

      ELBASHIR N O, DUTTA P, MANIVANNAN A, SEEHRA M S, ROBERTS C B. Impact of cobalt-based catalyst characteristics on the performance of conventional gas-phase and supercritical-phase Fischer-Tropsch synthesis[J]. Appl. Catal. A‒Gen., 2005,285:169-180. doi: 10.1016/j.apcata.2005.02.023

    14. [14]

      KRESSE G, FURTHMüLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comp. Mater. Sci., 1996,6:15-50. doi: 10.1016/0927-0256(96)00008-0

    15. [15]

      KRESSE G, FURTHMüLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev. B, 1996,54:11169-11186. doi: 10.1103/PhysRevB.54.11169

    16. [16]

      BLOCH P E. Projector augmented-wave method[J]. Phys. Rev. B, 1994,50:17953-17979. doi: 10.1103/PhysRevB.50.17953

    17. [17]

      KRESSE G. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys. Rev. B, 1999,59:1758-1775.

    18. [18]

      PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996,77:3865-3868. doi: 10.1103/PhysRevLett.77.3865

    19. [19]

      HENKELMAN G, JóNSSON H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points[J]. J. Chem. Phys., 2000,113:9978-9985. doi: 10.1063/1.1323224

    20. [20]

      MAO F, GAO C, WANG F, ZHANG C, ZHANG F S. Ab initio study of ferromagnetism induced by electronic hole localization in Al-doped α-SiO2[J]. J. Phys. Chem. C, 2017,121:23055-23061. doi: 10.1021/acs.jpcc.7b06680

    21. [21]

      WANG H, CHAI Z F, WANG D Q. Adsorption of uranyl on hydroxylated α-SiO2(001): A first-principle study[J]. Dalton. Trans., 2015,44:1646-1654. doi: 10.1039/C4DT02872D

    22. [22]

      LIU P, WANG Q S, LI X, ZHANG C C. Investigation of the states of water and OH groups on the surface of silica[J]. Colloid. Surf. Physicochem. Eng. Asp., 2009,334:112-115. doi: 10.1016/j.colsurfa.2008.10.028

    23. [23]

      MURASHOV V V. Reconstruction of pristine and hydrolyzed quartz surfaces[J]. J. Phys. Chem. B, 2005,109:4144-4151. doi: 10.1021/jp0402075

    24. [24]

      RUBAN A, HAMMER B, STOLTZE P, SKRIVER H L, NóRSKOV J K. Surface electronic structure and reactivity of transition and noble metals[J]. J. Mol. Catal. A‒Chem, 1997,115(3):421-429. doi: 10.1016/S1381-1169(96)00348-2

    25. [25]

      HAMMER B, NORSKOV J K. Why gold is the noblest of all the metals[J]. Nature, 1995,376(6537):238-240. doi: 10.1038/376238a0

    26. [26]

      HUO C F, LI Y W, WANG J G, JIAO H J. Formation of CHx species from CO dissociation on double-stepped Co(0001): Exploring fischer-tropsch mechanism[J]. J. Phys. Chem. C, 2008,112:14108-14116.

    27. [27]

      ZHANG R, LIU F, WANG Q, WANG B J, LI D B. Insight into CHx formation in Fischer-Tropsch synthesis on the hexahedron Co catalyst: Effect of surface structure on the preferential mechanism and existence form[J]. Appl. Catal. A‒Gen., 2016,525:76-84. doi: 10.1016/j.apcata.2016.07.007

    28. [28]

      HERRANZ T, DENG X Y, CABOT A, GUO J G, SALMERON M. Influence of the cobalt particle size in the CO hydrogenation reaction studied by in situ X-ray absorption spectroscopy[J]. J. Phys. Chem. B, 2009,113(31):10721-10727. doi: 10.1021/jp901602s

    29. [29]

      TUXEN A, CARENCO S, CHINTAPALLI M, CHUANG C H, ESCUDERO C, PACH E, JIANG P, BORONDICS F, BEBERWYCK B, ALIVISATOS A P, THORNTON G, PONG W F, GUO J H, PEREZ R, BESENBACHER F, SALMERON M. Size-dependent dissociation of carbon monoxide on cobalt nanoparticles[J]. J. Am. Chem. Soc., 2013,135(6):2273-2278. doi: 10.1021/ja3105889

    30. [30]

      BEZEMER G L, BITTER J H, KUIPERS H P C E, OOSTERBEEK H, HOLEWIjN J E, XU X D, KAPTEIjN F, DILLEN A J, DE JONG K P. Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts[J]. J. Am. Chem. Soc., 2006,128(12):3956-3964. doi: 10.1021/ja058282w

    31. [31]

      ZHAO J J, QUAN X, CHEN S, LIU Y M, YU H T. Cobalt nanoparticles encapsulated in porous carbons derived from core‐shell ZIF67@ZIF8 as efficient electrocatalysts for oxygen evolution reaction[J]. ACS Appl. Mater. Interfaces, 2017,9(34):28685-28694. doi: 10.1021/acsami.7b10138

    32. [32]

      QIN C, HOU B, WANG J G, WANG G, MA Z Y, JIA L T, LI D B. Stabilizing optimal crystalline facet of cobalt catalysts for Fischer-Tropsch synthesis[J]. ACS Appl. Mater. Interfaces, 2019,11(37):33886-33893. doi: 10.1021/acsami.9b10174

  • 加载中
    1. [1]

      Chengyan GeJiawei HuXingyu LiuYuxi SongChao LiuZhigang Zou . Self-integrated black NiO clusters with ZnIn2S4 microspheres for photothermal-assisted hydrogen evolution by S-scheme electron transfer mechanism. Acta Physico-Chimica Sinica, 2026, 42(1): 100154-0. doi: 10.1016/j.actphy.2025.100154

    2. [2]

      Xiaohang JINQi LIUJianping LANG . Room‑temperature solid‑state synthesis, structure, and third‑order nonlinear optical properties of phosphine‑ligand‑protected silver thiolate clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1505-1512. doi: 10.11862/CJIC.20250125

    3. [3]

      Ximeng CHIJianwei WEIYunyun WANGWenxin DENGJiayi DAIXu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401

    4. [4]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    5. [5]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    6. [6]

      Guang-Xu DuanQueting ChenRui-Rui ShaoHui-Huang SunTong YuanDong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751

    7. [7]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    8. [8]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    9. [9]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    10. [10]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    11. [11]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    12. [12]

      Wenxu Liu Feng Han Boxuan Wang Huayi Liu Xiaobin Gu Xin Zhang Yao Liu . Comprehensive Chemical Experiment: Design, Synthesis, and Photoelectronic Properties Study of Fully Non-Fused Ring Electron Acceptors. University Chemistry, 2025, 40(10): 263-275. doi: 10.12461/PKU.DXHX202412021

    13. [13]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    14. [14]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    15. [15]

      Shengwen XULonglong YANGHouji CAODeshuang TUXing WEIChangsheng LUHong YAN . Research progress on light-induced functionalization of polyhedral carborane clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2187-2200. doi: 10.11862/CJIC.20250192

    16. [16]

      Yujie WANGLaobang WANGZheng ZHANGQi LIUJianping LANG . Construction of W/Cu/S cluster-based supramolecular compounds via alkynyl/sulfur cycloaddition and their third-order nonlinear optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2069-2077. doi: 10.11862/CJIC.20250129

    17. [17]

      Lubing QinFang SunMeiyin LiHao FanLikai WangQing TangChundong WangZhenghua Tang . Atomically Precise (AgPd)27 Nanoclusters for Nitrate Electroreduction to NH3: Modulating the Metal Core by a Ligand Induced Strategy. Acta Physico-Chimica Sinica, 2025, 41(1): 100008-0. doi: 10.3866/PKU.WHXB202403008

    18. [18]

      Linfeng Zhou Yulin Zhang Suhao Lin Longguan Zhu . 2023年北京大学金秋营及第37届中国化学奥林匹克决赛磷团簇相关试题解析与拓展. University Chemistry, 2025, 40(8): 376-387. doi: 10.12461/PKU.DXHX202411030

    19. [19]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    20. [20]

      Xing Xiao Yunling Jia Wanyu Hong Yuqing He Yanjun Wang Lizhi Zhao Huiqin An Zhen Yin . Sulfur-defective ZnIn2S4 nanosheets decorated by TiO2 nanosheets with exposed {001} facets to accelerate charge transfer for efficient photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100474-100474. doi: 10.1016/j.cjsc.2024.100474

Metrics
  • PDF Downloads(0)
  • Abstract views(290)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return