Hydrogen storage properties of C6S6Li6: A density functional theory study
- Corresponding author: Nan LI, Leen04@bit.edu.cn
Citation:
Yupeng TANG, Haiying YANG, Fan JIN, Nan LI. Hydrogen storage properties of C6S6Li6: A density functional theory study[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(9): 1827-1839.
doi:
10.11862/CJIC.20240460
LUBITZ W, TUMAS W. Hydrogen: An overview[J]. Chem. Rev., 2007,107(10): 3900-3903
doi: 10.1021/cr050200z
SCHLAPBACH L, ZÜTTEL A. Hydrogen-storage materials for mobile applications[J]. Nature, 2001,414: 353-358
doi: 10.1038/35104634
SARTBAEVA A, KUZNETSOV V L, WELLS S A, EDWARDS P P. Hydrogen nexus in a sustainable energy future[J]. Energy Environ. Sci., 2008, 1: 79-85
doi: 10.1039/b810104n
HU Y H. Novel hydrogen storage systems and materials[J]. Int. J. Energy Res., 2013, 37: 683-685
doi: 10.1002/er.3056
LUO W, CAMPBELL P G, ZAKHAROV L N, LIU S Y. A single-component liquid-phase hydrogen storage material[J]. J. Am. Chem. Soc., 2011,133(48): 19326-19329
doi: 10.1021/ja208834v
HU T H, LI Z H, ZHANG Q F. First principles and molecular dynamics simulations of effect of dopants on properties of high strength steel for hydrogen storage vessels[J]. Acta Phys. Sin., 2024, 73(6): 067101
RUSMAN N A A, DAHARI M. A review on the current progress of metal hydrides material for solid-state hydrogen storage applications[J]. Int. J. Hydrog. Energy, 2016, 41(28): 12108-12126
doi: 10.1016/j.ijhydene.2016.05.244
ZHOU W L, JIN S Y, DAI W, LYON J T, LU C. Theoretical study on the structural evolution and hydrogen storage in NbHn (n = 2-15) clusters[J]. Int. J. Hydrog. Energy, 2021, 46(33): 17246-17252
doi: 10.1016/j.ijhydene.2021.02.095
SUN Y, SHEN C, LAI Q, LIU W, WANG D W, AGUEY-ZINSOU K F. Tailoring magnesium based materials for hydrogen storage through synthesis: Current state of the art[J]. Energy Storage Mater., 2018, 10: 168-198
doi: 10.1016/j.ensm.2017.01.010
ZHANG Q Y, DU S C, MA Z W, LIN X, ZHOU J X, ZHU W, REN L, LI Y H. Recent advances in Mg-based hydrogen storage materials[J]. Chin. Sci. Bull., 2022, 67(19): 2158-2171
CHEN H J, LIANG H, DAI W, LU C, DING K W, BI J, ZHU B C. MgScH15: A highly stable cluster for hydrogen storage[J]. Int. J. Hydrog. Energy, 2020, 45(56): 32260-32268
doi: 10.1016/j.ijhydene.2020.08.229
DILLON A C, JONES K M, BEKKEDAHL T A, KIANG C H, BETHUNE D S, HEBEN M J. Storage of hydrogen in single-walled carbon nanotubes[J]. Nature, 1997,386: 377-379
doi: 10.1038/386377a0
ZÜTTEL A, SUDAN P, MAURON P H, KIYOBAYASHI T, EMMENEGGER C H, SCHLAPBACH L. Hydrogen storage in carbon nanostructures[J]. Int. J. Hydrog. Energy, 2002, 27(2): 203-212
doi: 10.1016/S0360-3199(01)00108-2
ZHANG X R, WANG W C. A density functional study of hydrogen adsorption in single-walled carbon nanotube arrays[J]. Acta Chim. Sin., 2002, 60(8): 1396-1404
doi: 10.3321/j.issn:0567-7351.2002.08.008
WU H L, QIU J S, HAO C, TANG Z A. Molecular dynamics simulation study of hydrogen storage in heterojunction carbon nanotubes[J]. Acta Chim. Sin., 2005, 63(11): 990-996
doi: 10.3321/j.issn:0567-7351.2005.11.007
JENA P J. Materials for hydrogen storage: Past, present, and future[J]. J. Phys. Chem. Lett., 2011, 2(3): 206-211
doi: 10.1021/jz1015372
Hydrogen and Fuel Cell Technologies Office. DOE technical targets for onboard hydrogen storage for light-duty vehicles[EB/OL]. [2025-05-22].
YILDIRIM T, CIRACI S. Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium[J]. Phys. Rev. Lett., 2005, 94: 175501
doi: 10.1103/PhysRevLett.94.175501
TANG C M, WU J R, WAN Y M, ZHANG Z J, KANG J, XIANG Y Y, ZHU W H. Geometric structure, electronic property, and hydrogen storage capacity of the Sc atoms decorated expanded sandwich type structure graphene-Sc-graphene[J]. Acta Chim. Sin., 2015, 73(11): 1189-1195
SHIN W H, YANG S H, GODDARD W A, KANG J K. Ni-dispersed fullerenes: Hydrogen storage and desorption properties[J]. Appl. Phys. Lett., 2006, 88(5): 053111
doi: 10.1063/1.2168775
SUN Q, WANG Q, JENA P, KAWAZOE Y. Clustering of Ti on a C60 surface and its effect on hydrogen storage[J]. J. Am. Chem. Soc., 2005,127(42): 14582-14585
doi: 10.1021/ja0550125
ZHANG M M, ZHANG F, WU Q, HUANG X, YAN W, ZHAO C M, CHEN W, YANG Z H, WANG Y H, WU T T. Grand canonical Monte Carlo simulation study of hydrogen storage by Li-decorated pha-graphene[J]. Chin. Phys. B., 2023, 32(6): 066803
doi: 10.1088/1674-1056/ac8ce2
SUN Q, JENA P, WANG Q, MARQUEZ M. First-principles study of hydrogen storage on Li12C60[J]. J. Am. Chem. Soc., 2006,128(30): 9741-9745
doi: 10.1021/ja058330c
TEPROVICH J A, WELLONS M S, LASCOLA R, HWANG S J, WARD P A, COMPTON R N, ZIDAN R. Synthesis and characterization of a lithium-doped fullerane (Lix-C60-Hy) for reversible hydrogen storage[J]. Nano. Lett., 2012, 12(2): 582-589
doi: 10.1021/nl203045v
QI P T, CHEN H S. Hydrogen storage properties of Li-decorated C24 clusters[J]. Acta Phys. Sin., 2015, 64(23): 238102
doi: 10.7498/aps.64.238102
REN H J, CUI C X, LI X J, LIU Y J. A DFT study of the hydrogen storage potentials and properties of Na- and Li-doped fullerenes[J]. Int. J. Hydrog. Energy, 2017, 42(1): 312-321
doi: 10.1016/j.ijhydene.2016.10.151
SAHOO R K, CHAKRABORTY B, SAHU S. Reversible hydrogen storage on alkali metal (Li and Na) decorated C20 fullerene: A density functional study[J]. Int. J. Hydrog. Energy, 2021, 46(80): 40251-40261
doi: 10.1016/j.ijhydene.2021.09.219
PENG Q, CHEN G, MIZUSEKI H, KAWAZOE Y. Hydrogen storage capacity of C60(OM)12 (M = Li and Na) clusters[J]. J. Chem. Phys., 2009,131(21): 214505
doi: 10.1063/1.3268919
GUO J C, LU H G, Li S D. M(C6X6Li6)2 (M = Cr, Mo, W; X = O, S): Transition-metal sandwich complexes with π-aromatic C6X6Li6 ligands[J]. Comput. Theor. Chem., 2013, 1018(15): 95-101
KOSAR N, ZARI L, AYUB K, GILANI M A, MAHMOOD T. Static, dynamic nonlinear optical (NLO) response and electride characteristics of superalkalis doped starlike C6S6Li6[J]. Surf. Interfaces, 2022, 31: 102044
doi: 10.1016/j.surfin.2022.102044
BECKE A D. Density-functional thermochemistry. Ⅲ. The role of exact exchange[J]. J. Chem. Phys., 1993, 98(7): 5648-5652
doi: 10.1063/1.464913
LEE C, YANG W, PARR R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Phys. Rev. B, 1988, 37: 785-789
doi: 10.1103/PhysRevB.37.785
CHAI J D, GORDON M H. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections[J]. Phys. Chem. Chem. Phys., 2008, 10(44): 6615-6620
doi: 10.1039/b810189b
SAHOO R K, SAHU S. Reversible hydrogen storage capacity of Li and Sc doped novel C8N8 cage: Insights from density functional theory[J]. Int. J. Energy Res., 2022, 46(15): 1-16
BOYS S F, BERNARDI F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors[J]. Mol. Phys., 1970, 19(4): 553-566
doi: 10.1080/00268977000101561
LU T, CHEN F W. Multiwfn: A multifunctional wavefunction analyzer[J]. J. Comput. Chem., 2012, 33(5): 580-592
doi: 10.1002/jcc.22885
BADER R W F. Atoms in molecules: A quantum theory[M]. Oxford: Clarendon, 1990: 53-351
LU T, CHEN Q X. Independent gradient model based on Hirshfeld partition: A new method for visual study of interactions in chemical systems[J]. J. Comput. Chem., 2022, 43(8): 539-555
doi: 10.1002/jcc.26812
SCHELEGEL H B, IYENGAR S S, LI X S, MILLAM J M, VOTH G A, SCUSERIA G E, FRISCH M J. Ab initio molecular dynamics: Propagating the density matrix with Gaussian orbitals. Ⅲ. Comparison with Born-Oppenheimer dynamics[J]. J. Chem. Phys., 2002,117(19): 8694-8704
WOLINSKI K, HINTON J F, PULAY P. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations[J]. J. Am. Chem. Soc., 1990,112(23): 8251-8260
TAYHARE P, DESHMUKH A, CHAUDHARI A. Impact of position and number of boron atom substitution on hydrogen uptake capacity of Li-decorated pentalene[J]. Phys. Chem. Chem. Phys., 2017, 19(1): 681-694
DU J G, JIANG G. An aromatic Ca2B8 complex for reversible hydrogen storage[J]. Int. J. Hydrog. Energy, 2021, 46(36): 19023-19030
YIN Y H, XU H P. Theoretical study on the hydrogen storage properties of (MgO)4 under external electric field[J]. Acta Phys. Sin., 2019, 68(16): 163601
SILVI B, SAVIN A. Classification of chemical bonds based on topological analysis of electron localization functions[J]. Nature, 1994,371: 683-686
LU T, CHEN F W. Meaning and functional form of the electron localization function[J]. Acta Phys.‒Chim. Sin., 2011, 27(12): 2786-2792
TAI T B, NGUYEN M T. A three-dimensional aromatic B6Li8 complex as a high capacity hydrogen storage material[J]. Chem. Commun., 2013, 49(9): 913-915
DU J G, SUN X Y, JIANG G. Hydrogen storage capability of cagelike Li3B12 clusters[J]. J. Appl. Phys., 2020,127(5): 054301
BANERJEE P, PATHAK B, AHUJA R, DAS G P. First principles design of Li functionalized hydrogenated h-BN nanosheet for hydrogen storage[J]. Int. J. Hydrog. Energy, 2016, 41(32): 14437-14446
JAISWAL A, SAHOO R K, RAY S S, SAHU S. Alkali metals decorated silicon clusters (SinMn, n = 6, 10; M = Li, Na) as potential hydrogen storage materials: A DFT study[J]. Int. J. Hydrog. Energy, 2022, 47(3): 1775-1789
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
Qiqi Li , Su Zhang , Yuting Jiang , Linna Zhu , Nannan Guo , Jing Zhang , Yutong Li , Tong Wei , Zhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009
Lubing Qin , Fang Sun , Meiyin Li , Hao Fan , Likai Wang , Qing Tang , Chundong Wang , Zhenghua Tang . Atomically Precise (AgPd)27 Nanoclusters for Nitrate Electroreduction to NH3: Modulating the Metal Core by a Ligand Induced Strategy. Acta Physico-Chimica Sinica, 2025, 41(1): 100008-0. doi: 10.3866/PKU.WHXB202403008
Xinran Zhang , Siqi Liu , Yichi Chen , Qingli Zou , Qinghong Xu , Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104
Yan Xin , Yunnian Ge , Zezhong Li , Qiaobao Zhang , Huajun Tian . Research Progress on Modification Strategies of Organic Electrode Materials for Energy Storage Batteries. Acta Physico-Chimica Sinica, 2024, 40(2): 2303060-0. doi: 10.3866/PKU.WHXB202303060
Ran Yu , Chen Hu , Ruili Guo , Ruonan Liu , Lixing Xia , Cenyu Yang , Jianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
Shu'e Song , Xiaokui Wang , Yongmei Liu , Wanchun Zhu , Hong Yuan , Fuping Tian , Yunshan Bai , Yunchao Li , Li Wang , Zhongyun Wu , Yuan Chun , Jianrong Zhang , Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Viscosity, Density and Optical Properties. University Chemistry, 2025, 40(5): 148-156. doi: 10.12461/PKU.DXHX202503026
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
Kexin Yan , Zhaoqi Ye , Lingtao Kong , He Li , Xue Yang , Yahong Zhang , Hongbin Zhang , Yi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013
Tingting XU , Wenjing ZHANG , Yongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229
Linfeng Zhou , Yulin Zhang , Suhao Lin , Longguan Zhu . 2023年北京大学金秋营及第37届中国化学奥林匹克决赛磷团簇相关试题解析与拓展. University Chemistry, 2025, 40(8): 376-387. doi: 10.12461/PKU.DXHX202411030
Xiaohang JIN , Qi LIU , Jianping LANG . Room‑temperature solid‑state synthesis, structure, and third‑order nonlinear optical properties of phosphine‑ligand‑protected silver thiolate clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1505-1512. doi: 10.11862/CJIC.20250125
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
Junqing WEN , Ruoqi WANG , Jianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243
Ming ZHENG , Yixiao ZHANG , Jian YANG , Pengfei GUAN , Xiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
(A) Right: the cyan and yellow balls are the minimum and maximum points, respectively; (B) Left: purple, yellow, gray, red, and cyan balls stand for Li, S, C, BCPs, and ring critical points (RCPs), respectively.
Inset: structures of C6S6Li6 at different simulation times.
A: gray, yellow, purple, and cyan balls are C, S, Li, and H atoms, respectively; ΔE is the relative energy; B: gray, yellow, purple, cyan, red, and blue balls stand for C, S, Li, H, BCPs and RCPs, respectively; Inset: sign(λ2) ρ colored IGMH δginter=0.005 a.u. isosurface.
The gray, yellow, purple, and cyan balls are C, S, Li, and H atoms, respectively.
The HOMO levels were marked with violet dashed lines.
Red and green isosurfaces correspond to +0.002 and -0.002 a.u., respectively; The gray, yellow, purple, and white balls are C, S, Li, and H atoms, respectively.
The gray, yellow, purple, and cyan balls are C, S, Li, and H atoms, respectively.
The gray, yellow, purple, and cyan balls are C, S, Li, and H atoms, respectively.