Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis
- Corresponding author: Xuhai ZHANG, zhangxuhai@seu.edu.cn Yuqiao ZENG, zyuqiao@seu.edu.cn
Citation:
Kai PENG, Xinyi ZHAO, Zixi CHEN, Xuhai ZHANG, Yuqiao ZENG, Jianqing JIANG. Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(7): 1257-1275.
doi:
10.11862/CJIC.20240454
AMIN M, SHAH H H, FAREED A G, KHAN W U, CHUNG E, ZIA A, RAHMAN FAROOQI Z U, LEE C. Hydrogen production through renewable and non-renewable energy processes and their impact on climate change[J]. Int. J. Hydrog. Energy, 2022, 47(77): 33112-33134
doi: 10.1016/j.ijhydene.2022.07.172
YU Z Y, DUAN Y, FENG X Y, YU X X, GAO M R, YU S H. Clean and affordable hydrogen fuel from alkaline water splitting: Past, recent progress, and future prospects[J]. Adv. Mater., 2021, 33(31): 2007100
doi: 10.1002/adma.202007100
KOTHARI R, BUDDHI D, SAWHNEY R L. Comparison of environmental and economic aspects of various hydrogen production methods[J]. Renew. Sust. Energ. Rev., 2008, 12(2): 553-563
doi: 10.1016/j.rser.2006.07.012
DINCER I. Green methods for hydrogen production[J]. Int. J. Hydrog. Energy, 2012, 37(2): 1954-1971
doi: 10.1016/j.ijhydene.2011.03.173
HASSAN N S, JALIL A A, RAJENDRAN S, KHUSNUN N F, BAHARI M B, JOHARI A, KAMARUDDIN M J, ISMAIL M. Recent review and evaluation of green hydrogen production via water electrolysis for a sustainable and clean energy society[J]. Int. J. Hydrog. Energy, 2024, 52: 420-441
doi: 10.1016/j.ijhydene.2023.09.068
THOMAS J G N. Kinetics of electrolytic hydrogen evolution and the adsorption of hydrogen by metals[J]. Trans. Faraday Soc., 1961, 57: 1603-1611
doi: 10.1039/tf9615701603
DAMJANOVIC A, DEY A, BOCKRIS J O M. Kinetics of oxygen evolution and dissolution on platinum electrodes[J]. Electrochim. Acta, 1966, 11(7): 791-814
doi: 10.1016/0013-4686(66)87056-1
HANSEN J N, PRATS H, TOUDAHL K K, MØRCH SECHER N, CHAN K, KIBSGAARD J, CHORKENDORFF I. Is there anything better than Pt for HER?[J]. ACS Energy Lett., 2021, 6(4): 1175-1180
doi: 10.1021/acsenergylett.1c00246
OVER H. Fundamental studies of planar single-crystalline oxide model electrodes (RuO2, IrO2) for acidic water splitting[J]. ACS Catal., 2021, 11(14): 8848-8871
doi: 10.1021/acscatal.1c01973
JIAO S L, FU X W, WANG S Y, ZHAO Y. Perfecting electrocatalysts via imperfections: Towards the large-scale deployment of water electrolysis technology[J]. Energy Environ. Sci., 2021, 14(4): 1722-1770
doi: 10.1039/D0EE03635H
YEH J W, CHEN S K, LIN S J, GAN J Y, CHIN T S, SHUN T T, TSAU C H, CHANG S Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Adv. Eng. Mater., 2004, 6(5): 299-303
doi: 10.1002/adem.200300567
CANTOR B, CHANG I T H, KNIGHT P, VINCENT A J B. Microstructural development in equiatomic multicomponent alloys[J]. Mater. Sci. Eng. A‒Struct. Mater. Prop. Microstruct. Process., 2004, 375/376/377: 213-218
TIAN F Y, VARGA L K, CHEN N X, SHEN J, VITOS L. Empirical design of single phase high-entropy alloys with high hardness[J]. Intermetallics, 2015, 58: 1-6
doi: 10.1016/j.intermet.2014.10.010
VAIDYA M, GURUVIDYATHRI K, MURTY B S. Phase formation and thermal stability of CoCrFeNi and CoCrFeMnNi equiatomic high entropy alloys[J]. J. Alloy. Compd., 2019, 774: 856-864
doi: 10.1016/j.jallcom.2018.09.342
LI R, LIU X J, LIU W H, LI Z B, CHAN K C, LU Z P. Design of hierarchical porosity via manipulating chemical and microstructural complexities in high-entropy alloys for efficient water electrolysis[J]. Adv. Sci., 2022, 9(12): 2105808
doi: 10.1002/advs.202105808
ROST C M, SACHET E, BORMAN T, MOBALLEGH A, DICKEY E C, HOU D, JONES J L, CURTAROLO S, MARIA J P. Entropy-stabilized oxides[J]. Nat. Commun., 2015, 6(1): 8485
doi: 10.1038/ncomms9485
ZHOU N X, JIANG S C, HUANG T, QIN M D, HU T, LUO J. Single-phase high-entropy intermetallic compounds (HEICs): Bridging high-entropy alloys and ceramics[J]. Sci. Bull., 2019, 64(12): 856-864
doi: 10.1016/j.scib.2019.05.007
OSES C, TOHER C, CURTAROLO S. High-entropy ceramics[J]. Nat. Rev. Mater., 2020, 5(4): 295-309
doi: 10.1038/s41578-019-0170-8
AKRAMI S, EDALATI P, FUJI M, EDALATI K. High-entropy ceramics: Review of principles, production and applications[J]. Mater. Sci. Eng. R‒Rep., 2021, 146: 100644
doi: 10.1016/j.mser.2021.100644
XIANG H M, XING Y, DAI F Z, WANG H J, SU L, MIAO L, ZHANG G L, WANG Y G, QI X W, YAO L, WANG H L, ZHAO B, LI J Q, ZHOU Y C. High-entropy ceramics: Present status, challenges, and a look forward[J]. J. Adv. Ceram., 2021, 10(3): 385-441
doi: 10.1007/s40145-021-0477-y
BOCKRIS J O M, AMMAR I A, HUQ A K M S. The mechanism of the hydrogen evolution reaction on platinum, silver and tungsten surfaces in acid solutions[J]. J. Phys. Chem. A, 1957, 61(7): 879-886
doi: 10.1021/j150553a008
DE CHIALVO M R G, CHIALVO A C. Hydrogen evolution reaction: Analysis of the Volmer-Heyrovsky-Tafel mechanism with a generalized adsorption model[J]. J. Electroanal. Chem., 1994, 372(1): 209-223
ĎUROVIČ M, HNáT J, BOUZEK K. Electrocatalysts for the hydrogen evolution reaction in alkaline and neutral media. a comparative review[J]. J. Power Sources, 2021, 493: 229708
doi: 10.1016/j.jpowsour.2021.229708
EID K, OZOEMENA K I, VARMA R S. Unravelling the structure-activity relationship of porous binary metal-based electrocatalysts for green hydrogen evolution reaction[J]. Coord. Chem. Rev., 2025, 523: 216238
doi: 10.1016/j.ccr.2024.216238
ZERADJANIN A R, POLYMEROS G, TOPARLI C, LEDENDECKER M, HODNIK N, ERBE A, ROHWERDER M, LA MANTIA F. What is the trigger for the hydrogen evolution reaction? ‒Towards electrocatalysis beyond the Sabatier principle[J]. Phys. Chem. Chem. Phys., 2020, 22(16): 8768-8780
doi: 10.1039/D0CP01108H
KUO D Y, PAIK H, KLOPPENBURG J, FAETH B, SHEN K M, SCHLOM D G, HAUTIER G, SUNTIVICH J. Measurements of oxygen electroadsorption energies and oxygen evolution reaction on RuO2(110): A discussion of the Sabatier principle and its role in electrocatalysis[J]. J. Am. Chem. Soc., 2018, 140(50): 17597-17605
doi: 10.1021/jacs.8b09657
NØRSKOV J K, BLIGAARD T, LOGADOTTIR A, KITCHIN J R, CHEN J G, PANDELOV S, STIMMING U. Trends in the exchange current for hydrogen evolution[J]. J. Electrochem. Soc., 2005, 152(3): J23
doi: 10.1149/1.1856988
MAN I C, SU H Y, CALLE-VALLEJO F, HANSEN H A, MARTÍNEZ J I, INOGLU N G, KITCHIN J, JARAMILLO T F, NØRSKOV J K, ROSSMEISL J. Universality in oxygen evolution electrocatalysis on oxide surfaces[J]. ChemCatChem, 2011, 3(7): 1159-1165
doi: 10.1002/cctc.201000397
KOPER M T M. Theory of multiple proton-electron transfer reactions and its implications for electrocatalysis[J]. Chem. Sci., 2013, 4(7): 2710-2723
doi: 10.1039/c3sc50205h
CHEN X H, ASCHAFFENBURG D J, CUK T J. Selecting between two transition states by which water oxidation intermediates decay on an oxide surface[J]. Nat. Catal., 2019, 2(9): 820-827
doi: 10.1038/s41929-019-0332-5
MUELLER D N, MACHALA M L, BLUHM H, CHUEH W C. Redox activity of surface oxygen anions in oxygen-deficient perovskite oxides during electrochemical reactions[J]. Nat. Commun., 2015, 6(1): 6097
doi: 10.1038/ncomms7097
MONTOYA J H, SEITZ L C, CHAKTHRANONT P, VOJVODIC A, JARAMILLO T F, NØRSKOV J K. Materials for solar fuels and chemicals[J]. Nat. Mater., 2017, 16(1): 70-81
doi: 10.1038/nmat4778
SEH Z W, KIBSGAARD J, DICKENS C F, CHORKENDORFF I, NØRSKOV J K, JARAMILLO T F. Combining theory and experiment in electrocatalysis: Insights into materials design[J]. Science, 2017, 355(6321): eaad4998
doi: 10.1126/science.aad4998
RONG X, PAROLIN J, KOLPAK A M. A fundamental relationship between reaction mechanism and stability in metal oxide catalysts for oxygen evolution[J]. ACS Catal., 2016, 6(2): 1153-1158
doi: 10.1021/acscatal.5b02432
LU M, ZHENG Y, HU Y, HUANG B L, JI D G, SUN M Z, LI J Y, PENG Y, SI R, XI P X, YAN C H. Artificially steering electrocatalytic oxygen evolution reaction mechanism by regulating oxygen defect contents in perovskites[J]. Sci. Adv., 2022, 8(30): eabq3563
doi: 10.1126/sciadv.abq3563
REN X R, ZHAI Y Y, YANG N, WANG B L, LIU S Z. Lattice oxygen redox mechanisms in the alkaline oxygen evolution reaction[J]. Adv. Funct. Mater., 2024, 34(32): 2401610
doi: 10.1002/adfm.202401610
WU J W, WANG H C, LIU N Y, JIA B B, ZHENG J L. High-entropy materials in electrocatalysis: Understanding, design, and development[J]. Small, 2024, 20(43): 2403162
doi: 10.1002/smll.202403162
KIM H K, JANG H, JIN X, KIM M G, HWANG S J. A crucial role of enhanced Volmer-Tafel mechanism in improving the electrocatalytic activity via synergetic optimization of host, interlayer, and surface features of 2D nanosheets[J]. Appl. Catal. B‒Environ., 2022, 312: 121391
doi: 10.1016/j.apcatb.2022.121391
JIANG T L, ZHANG Z W, WEI S Y, TAN S X, LIU H X, CHEN W. Rechargeable hydrogen gas batteries: Fundamentals, principles, materials, and applications[J]. Adv. Mater., 2024, 37(1): 2412108
WANG H, ZHAI T T, WU Y F, ZHOU T, ZHOU B B, SHANG C X, GUO Z X. High-valence oxides for high performance oxygen evolution electrocatalysis[J]. Adv. Sci., 2023, 10(22): 2301706
doi: 10.1002/advs.202301706
NOOR T, YAQOOB L, IQBAL N. Recent advances in electrocatalysis of oxygen evolution reaction using noble-metal, transition-metal, and carbon-based materials[J]. ChemElectroChem, 2021, 8(3): 447-483
doi: 10.1002/celc.202001441
ARALEKALLU S, SANNEGOWDA LOKESH K, SINGH V. Advanced bifunctional catalysts for energy production by electrolysis of earth-abundant water[J]. Fuel, 2024, 357: 129753
doi: 10.1016/j.fuel.2023.129753
QIN Y C, WANG F Q, WANG X M, WANG M W, ZHANG W L, AN W K, WANG X P, REN Y L, ZHENG X, LV D C, AHMAD A. Noble metal-based high-entropy alloys as advanced electrocatalysts for energy conversion[J]. Rare Metals, 2021, 40(9): 2354-2368
doi: 10.1007/s12598-021-01727-y
HUANG X F, YANG G X, LI S, WANG H J, CAO Y H, PENG F, YU H. Noble-metal-based high-entropy-alloy nanoparticles for electrocatalysis[J]. J. Energy Chem., 2022, 68: 721-751
doi: 10.1016/j.jechem.2021.12.026
FENG G, NING F H, SONG J, SHANG H F, ZHANG K, DING Z P, GAO P, CHU W S, XIA D G. Sub-2 nm ultrasmall high-entropy alloy nanoparticles for extremely superior electrocatalytic hydrogen evolution[J]. J. Am. Chem. Soc., 2021, 143(41): 17117-17127
doi: 10.1021/jacs.1c07643
FU X B, ZHANG J H, ZHAN S Q, XIA F J, WANG C G, MA D S, YUE Q, WU J S, KANG Y J. High-entropy alloy nanosheets for fine-tuning hydrogen evolution[J]. ACS Catal., 2022, 12(19): 11955-11959
doi: 10.1021/acscatal.2c02778
LIU H, QIN H Y, KANG J L, MA L Y, CHEN G X, HUANG Q, ZHANG Z J, LIU E Z, LU H M, LI J X, ZHAO N Q. A freestanding nanoporous NiCoFeMoMn high-entropy alloy as an efficient electrocatalyst for rapid water splitting[J]. Chem. Eng. J., 2022, 435: 134898
doi: 10.1016/j.cej.2022.134898
WANG C Y, ZHAO S, HAN G Q, BIAN H W, ZHAO X R, WANG L N, XIE G W. Hierarchical porous nonprecious high-entropy alloys for ultralow overpotential in hydrogen evolution reaction[J]. Small Methods, 2024, 8(10): 2301691
YAO R Q, ZHOU Y T, SHI H, WAN W B, ZHANG Q H, GU L, ZHU Y F, WEN Z, LANG X Y, JIANG Q. Nanoporous surface high-entropy alloys as highly efficient multisite electrocatalysts for nonacidic hydrogen evolution reaction[J]. Adv. Funct. Mater., 2021, 31(10): 2009613
doi: 10.1002/adfm.202009613
FENG D Y, DONG Y B, NIE P, ZHANG L, QIAO Z A. CoNiCuMgZn high entropy alloy nanoparticles embedded onto graphene sheets via anchoring and alloying strategy as efficient electrocatalysts for hydrogen evolution reaction[J]. Chem. Eng. J., 2022, 430: 132883
doi: 10.1016/j.cej.2021.132883
SHI H, SUN X Y, ZENG S P, LIU Y, HAN G F, WANG T H, WEN Z, FANG Q R, LANG X Y, JIANG Q. Nanoporous nonprecious high-entropy alloys as multisite electrocatalysts for ampere-level current-density hydrogen evolution[J]. Small Struct., 2023, 4(9): 2300042
doi: 10.1002/sstr.202300042
MAULANA A L, CHEN P C, SHI Z, YANG Y, LIZANDARA-PUEYO C, SEELER F, ABRUÑA H D, MULLER D, SCHIERLE-ARNDT K, YANG P D. Understanding the structural evolution of IrFeCoNiCu high-entropy alloy nanoparticles under the acidic oxygen evolution reaction[J]. Nano Lett., 2023, 23(14): 6637-6644
doi: 10.1021/acs.nanolett.3c01831
ZHU H, ZHU Z F, HAO J C, SUN S H, LU S L, WANG C, MA P M, DONG W F, DU M L. High-entropy alloy stabilized active Ir for highly efficient acidic oxygen evolution[J]. Chem. Eng. J., 2022, 431: 133251
doi: 10.1016/j.cej.2021.133251
CHANG S Q, CHENG C C, CHENG P Y, HUANG C L, LU S Y. Pulse electrodeposited FeCoNiMnW high entropy alloys as efficient and stable bifunctional electrocatalysts for acidic water splitting[J]. Chem. Eng. J., 2022, 446: 137452
doi: 10.1016/j.cej.2022.137452
YI L Y, XIAO S M, WEI Y P, LI D Z, WANG R F, GUO S F, HU W H. Free-standing high-entropy alloy plate for efficient water oxidation catalysis: Structure/composition evolution and implication of high-valence metals[J]. Chem. Eng. J., 2023, 469: 144015
doi: 10.1016/j.cej.2023.144015
MEI Y J, FENG Y B, ZHANG C X, ZHANG Y, QI Q L, HU J. High-entropy alloy with Mo-coordination as efficient electrocatalyst for oxygen evolution reaction[J]. ACS Catal., 2022, 12(17): 10808-10817
doi: 10.1021/acscatal.2c02604
XIAO L Y, WANG Z L, GUAN J Q. Optimization strategies of high-entropy alloys for electrocatalytic applications[J]. Chem. Sci., 2023, 14(45): 12850-12868
doi: 10.1039/D3SC04962K
HUANG K, ZHANG B W, WU J S, ZHANG T Y, PENG D D, CAO X, ZHANG Z, LI Z, HUANG Y Z. Exploring the impact of atomic lattice deformation on oxygen evolution reactions based on a sub-5 nm pure face-centred cubic high-entropy alloy electrocatalyst[J]. J. Mater. Chem. A, 2020, 8(24): 11938-11947
doi: 10.1039/D0TA02125C
WEI H H, WANG Q, ZHANG Y, LI J, LIU P, WANG N N, GONG X Q. Engineering high-entropy alloy nanosheets toward efficient electrocatalytic water oxidation[J]. Fuel, 2024, 358: 130011
doi: 10.1016/j.fuel.2023.130011
WU Q N, WANG Y N, ZHANG K X, XIE Z B, SUN K, AN W, LIANG X, ZOU X X. Advances and status of anode catalysts for proton exchange membrane water electrolysis technology[J]. Mat. Chem. Front., 2023, 7(6): 1025-1045
doi: 10.1039/D3QM00010A
DOMALANTA M R, BAMBA J N, MATIENZO D J D, DEL ROSARIO-PARAGGUA J A, OCON J. Pathways towards achieving high current density water electrolysis: From material perspective to system configuration[J]. ChemSusChem, 2023, 16(13): e202300310
doi: 10.1002/cssc.202300310
XU H G, ZHANG X Y, DING Y, FU H Q, WANG R, MAO F, LIU P F, YANG H G. Rational design of hydrogen evolution reaction electrocatalysts for commercial alkaline water electrolysis[J]. Small Struct., 2023, 4(8): 2200404
doi: 10.1002/sstr.202200404
SUN H N, XU X M, KIM H, JUNG W, ZHOU W, SHAO Z P. Electrochemical water splitting: Bridging the gaps between fundamental research and industrial applications[J]. Energy Environ. Mater., 2023, 6(5): e12441
doi: 10.1002/eem2.12441
LI P, WAN X H, SU J H, LIU W, GUO Y Z, YIN H Y, WANG D H. A single-phase FeCoNiMnMo high-entropy alloy oxygen evolution anode working in alkaline solution for over 1 000 h[J]. ACS Catal., 2022, 12(19): 11667-11674
doi: 10.1021/acscatal.2c02946
CUI Y F, JIANG S D, FU Q, WANG R, XU P, SUI Y, WANG X J, NING Z L, SUN J F, SUN X, NIKIFOROV A, SONG B. Cost-effective high entropy core-shell fiber for stable oxygen evolution reaction at 2 A cm-2[J]. Adv. Funct. Mater., 2023, 33(50): 2306889
doi: 10.1002/adfm.202306889
CUI P, WANG T H, ZHANG X H, WANG X Y, WU H, WU Y K, BA C Y, ZENG Y Q, LIU P, JIANG J Q. Rapid formation of epitaxial oxygen evolution reaction catalysts on dendrites with high catalytic activity and stability[J]. ACS Nano, 2023, 17(22): 22268-22276
doi: 10.1021/acsnano.3c02662
CUI P, WANG T H, ZHANG X H, BA C Y, WU Y K, PENG K, ZENG Y Q, JIANG J Q. NiCoCuP foam with a 3D hierarchical porous structure as all-pH efficient and stable HER electrocatalyst[J]. Int. J. Hydrog. Energy, 2023, 48(44): 16725-16732
doi: 10.1016/j.ijhydene.2023.01.100
LI Y Y, ZHANG Q W, ZHAO X R, WU H F, WANG X Y, ZENG Y Q, CHEN Q, CHEN M W, LIU P. Vapor phase dealloying derived nanoporous Co@CoO/RuO2 composites for efficient and durable oxygen evolution reaction[J]. Adv. Funct. Mater., 2023, 33(17): 2214124
doi: 10.1002/adfm.202214124
ZHANG X H, CAO C T, LING T, YE C, LU J, SHAN J Q. Developing practical catalysts for high-current-density water electrolysis[J]. Adv. Energy Mater., 2024, 14(45): 2402633
doi: 10.1002/aenm.202402633
ZHANG H M, ZHANG S F, ZUO L H, LI J K, GUO J X, WANG P, SUN J F, DAI L. Recent advances of high-entropy electrocatalysts for water electrolysis by electrodeposition technology: A short review[J]. Rare Metals, 2024, 43(6): 2371-2390
doi: 10.1007/s12598-024-02619-7
SCHWEIDLER S, BOTROS M, STRAUSS F, WANG Q S, MA Y J, VELASCO L, CADILHA MARQUES G, SARKAR A, KÜBEL C, HAHN H, AGHASSI-HAGMANN J, BREZESINSKI T, BREITUNG B. High-entropy materials for energy and electronic applications[J]. Nat. Rev. Mater., 2024, 9(4): 266-281
doi: 10.1038/s41578-024-00654-5
KANTE M V, WEBER M L, NI S, VAN DEN BOSCH I C G, VAN DER MINNE E, HEYMANN L, FALLING L J, GAUQUELIN N, TSVETANOVA M, CUNHA D M, KOSTER G, GUNKEL F, NEMŠÁK S, HAHN H, VELASCO ESTRADA L, BAEUMER C. A high-entropy oxide as high-activity electrocatalyst for water oxidation[J]. ACS Nano, 2023, 17(6): 5329-5339
doi: 10.1021/acsnano.2c08096
KARTHIKEYAN S C, RAMAKRISHNAN S, PRABHAKARAN S, SUBRAMANIAM M R, MAMLOUK M, KIM D H, YOO D J. Low-cost self-reconstructed high entropy oxide as an ultra-durable OER electrocatalyst for anion exchange membrane water electrolyzer[J]. Small, 2024, 20(45): 2402241
doi: 10.1002/smll.202402241
SAIRAM K V R S, AZIZ S K T, KARAJAGI I, SAINI A, PAL M, GHOSH P C, DUTTA A. A quinary high entropy metal oxide exhibiting robust and efficient bidirectional O2 reduction and water oxidation[J]. Int. J. Hydrog. Energy, 2023, 48(28): 10521-10531
doi: 10.1016/j.ijhydene.2022.12.034
DING S, SUN Y T, LOU F Q, YU L C, XIA B K, DUAN J J, ZHANG Y Z, CHEN S. Plasma-regulated two-dimensional high entropy oxide arrays for synergistic hydrogen evolution: From theoretical prediction to electrocatalytic applications[J]. J. Power Sources, 2022, 520: 230873
doi: 10.1016/j.jpowsour.2021.230873
NGUYEN T X, LIAO Y C, LIN C C, SU Y H, TING J M. Advanced high entropy perovskite oxide electrocatalyst for oxygen evolution reaction[J]. Adv. Funct. Mater., 2021, 31(27): 2101632
doi: 10.1002/adfm.202101632
LIU D, GUO P F, YAN X X, HE Y F, WU R B. Manipulating the configuration entropy of layered hydroxides toward efficient oxygen evolution reaction for anion exchange membrane electrolyzer[J]. Mater. Today, 2024, 80: 101-112
doi: 10.1016/j.mattod.2024.08.008
ZHANG L J, CAI W W, BAO N Z, YANG H. Implanting an electron donor to enlarge the d-p hybridization of high-entropy (oxy)hydroxide: A novel design to boost oxygen evolution[J]. Adv. Mater., 2022, 34(26): 2110511
doi: 10.1002/adma.202110511
LIU D, YAN X X, GUO P F, YANG Y X, HE Y F, LIU J, CHEN J, PAN H G, WU R B. Inert Mg incorporation to break the activity/stability relationship in high-entropy layered hydroxides for the electrocatalytic oxygen evolution Reaction[J]. ACS Catal., 2023, 13(11): 7698-7706
doi: 10.1021/acscatal.3c00786
WANG F Q, ZOU P C, ZHANG Y T, PAN W L, LI Y, LIANG L M, CHEN C, LIU H, ZHENG S. Activating lattice oxygen in high-entropy LDH for robust and durable water oxidation[J]. Nat. Commun., 2023, 14(1): 6019
doi: 10.1038/s41467-023-41706-8
ZHAO X H, XUE Z M, CHEN W J, WANG Y Q, MU T C. Eutectic synthesis of high-entropy metal phosphides for electrocatalytic water splitting[J]. ChemSusChem, 2020, 13(8): 2038-2042
doi: 10.1002/cssc.202000173
WANG Z, LI J Z, YUAN S, YANG J S, JIN Z Q, TAN X J, DANG J, MU W Z, LI G J, WANG Q. Sabatier principle based design of high performance FeCoNiMnMoP high entropy electrocatalysis for alkaline water splitting[J]. Chem. Eng. J., 2024, 497: 154650
doi: 10.1016/j.cej.2024.154650
WANG Z C, ZHANG X Y, WU X K, PAN Y, LI H D, HAN Y, XU G R, CHI J Q, LAI J P, WANG L. High-entropy phosphate/C hybrid nanosheets for efficient acidic hydrogen evolution reaction[J]. Chem. Eng. J., 2022, 437: 135375
doi: 10.1016/j.cej.2022.135375
LAI D W, KANG Q L, GAO F, LU Q. High-entropy effect of a metal phosphide on enhanced overall water splitting performance[J]. J. Mater. Chem. A, 2021, 9(33): 17913-17922
doi: 10.1039/D1TA04755H
WU L F, HOFMANN J P. High-entropy transition metal chalcogenides as electrocatalysts for renewable energy conversion[J]. Curr. Opin. Electrochem., 2022, 34: 101010
doi: 10.1016/j.coelec.2022.101010
MOHILI R, HEMANTH N R, JIN H, LEE K, CHAUDHARI N. Emerging high entropy metal sulphides and phosphides for electrochemical water splitting[J]. J. Mater. Chem. A, 2023, 11(20): 10463-10472
doi: 10.1039/D2TA10081A
LEI Y T, ZHANG L L, XU W J, XIONG C L, CHEN W X, XIANG X, ZHANG B, SHANG H S. Carbon-supported high-entropy Co-Zn-Cd-Cu-Mn sulfide nanoarrays promise high-performance overall water splitting[J]. Nano Res., 2022, 15(7): 6054-6061
doi: 10.1007/s12274-022-4304-8
NGUYEN T X, SU Y H, LIN C C, TING J M. Self-reconstruction of sulfate-containing high entropy sulfide for exceptionally high-Performance oxygen evolution reaction electrocatalyst[J]. Adv. Funct. Mater., 2021, 31(48): 2106229
doi: 10.1002/adfm.202106229
HAUSMANN J N, MENEZES P W. Why should transition metal chalcogenides be investigated as water splitting precatalysts even though they transform into (oxyhydr)oxides?[J]. Curr. Opin. Electrochem., 2022, 34: 100991
doi: 10.1016/j.coelec.2022.100991
JIANG Z Q, YUAN Y, TAN L, LI M J, PENG K. Self-reconstruction of (CoNiFeCuCr)Se high-entropy selenide for efficient oxygen evolution reaction[J]. Appl. Surf. Sci., 2023, 627: 157282
doi: 10.1016/j.apsusc.2023.157282
WANG T, CHEN H, YANG Z Z, LIANG J Y, DAI S. High-entropy perovskite fluorides: A new platform for oxygen evolution catalysis[J]. J. Am. Chem. Soc., 2020, 142(10): 4550-4554
doi: 10.1021/jacs.9b12377
NIU S Y, YANG Z W, QI F G, HAN Y, SHI Z Z, QIU Q W, HAN X P, WANG Y, DU X W. Electrical discharge induced bulk-to-nanoparticle transformation: Nano high-entropy carbide as catalysts for hydrogen evolution reaction[J]. Adv. Funct. Mater., 2022, 32(35): 2203787
doi: 10.1002/adfm.202203787
DONG S Z, LI Q J, HU H Y, ZHANG X, LI Y S, YE K, HOU W J, HE J Q, ZHAO H W. Application of rare-earth high entropy boride in electrocatalytic hydrogen evolution reaction[J]. Appl. Surf. Sci., 2023, 615: 156413
doi: 10.1016/j.apsusc.2023.156413
WU Q F, WANG Z J, ZHENG T, CHEN D, YANG Z S, LI J J, KAI J J, WANG J C. A casting eutectic high entropy alloy with superior strength-ductility combination[J]. Mater. Lett., 2019, 253: 268-271
doi: 10.1016/j.matlet.2019.06.067
GUO W M, LIU B, LIU Y, LI T C, FU A, FANG Q H, NIE Y. Microstructures and mechanical properties of ductile NbTaTiV refractory high entropy alloy prepared by powder metallurgy[J]. J. Alloy. Compd., 2019, 776: 428-436
doi: 10.1016/j.jallcom.2018.10.230
KANG Y Q, CRETU O, KIKKAWA J, KIMOTO K, NARA H, NUGRAHA A S, KAWAMOTO H, EGUCHI M, LIAO T, SUN Z Q, ASAHI T, YAMAUCHI Y. Mesoporous multimetallic nanospheres with exposed highly entropic alloy sites[J]. Nat. Commun., 2023, 14(1): 4182
doi: 10.1038/s41467-023-39157-2
WANG D D, LIU Z J, DU S Q, ZHANG Y Q, LI H, XIAO Z H, CHEN W, CHEN R, WANG Y Y, ZOU Y Q, WANG S Y. Low-temperature synthesis of small-sized high-entropy oxides for water oxidation[J]. J. Mater. Chem. A, 2019, 7(42): 24211-24216
doi: 10.1039/C9TA08740K
GU K Z, ZHU X Y, WANG D D, ZHANG N N, HUANG G, LI W, LONG P, TIAN J, ZOU Y Q, WANG Y Y, CHEN R, WANG S Y. Ultrathin defective high-entropy layered double hydroxides for electrochemical water oxidation[J]. J. Energy Chem., 2021, 60: 121-126
doi: 10.1016/j.jechem.2020.12.029
CARNÉ-SÁNCHEZ A, IMAZ I, CANO-SARABIA M, MASPOCH D. A spray-drying strategy for synthesis of nanoscale metal-organic frameworks and their assembly into hollow superstructures[J]. Nat. Chem., 2013, 5(3): 203-211
doi: 10.1038/nchem.1569
ZHU Y J, CHOI S H, FAN X L, SHIN J, MA Z H, ZACHARIAH M R, CHOI J W, WANG C S. Recent progress on spray pyrolysis for high performance electrode materials in lithium and sodium rechargeable batteries[J]. Adv. Energy Mater., 2017, 7(7): 1601578
doi: 10.1002/aenm.201601578
DAI Y F, JU J, LUO L L, JIANG H, HU Y J, LI C Z. Flame spray pyrolysis synthesis of ultra-small high-entropy alloy-supported oxide nanoparticles for CO2 hydrogenation catalysts[J]. Small Methods, 2024, 8(10): 2301768
BRANDT T G, TUOKKOLA A R, YU M, LAINE R M. Liquid-feed flame spray pyrolysis enabled synthesis of Co- and Cr-free, high-entropy spinel oxides as Li-ion anodes[J]. Chem. Eng. J., 2023, 474: 145495
doi: 10.1016/j.cej.2023.145495
ZHENG H N, ZHANG Y R, XU Z, ZHOU G Z, ZHAO X T, HUANG Z, LIN H. One-step synthesis of Pt@(CrMnFeCoNi)3O4 high entropy oxide catalysts through flame spray pyrolysis[J]. J. Energy Inst., 2024, 117: 101804
doi: 10.1016/j.joei.2024.101804
ZHAO P C, CAO Q G, YI W, HAO X D, LI J, ZHANG B S, HUANG L, HUANG Y J, JIANG Y B, XU B S, SHAN Z W, CHEN J L. Facile and general method to synthesize Pt-based high-entropy-alloy nanoparticles[J]. ACS Nano, 2022, 16(9): 14017-14028
doi: 10.1021/acsnano.2c03818
PAVITHRA C L P, JANARDHANA R K S K, REDDY K M, MURAPAKA C, JOARDAR J, SARADA B V, TAMBOLI R R, HU Y, ZHANG Y, WANG X, DEY S R. An advancement in the synthesis of unique soft magnetic CoCuFeNiZn high entropy alloy thin films[J]. Sci. Rep., 2021, 11(1): 8836
doi: 10.1038/s41598-021-87786-8
RITTER T G, PHAKATKAR A H, RASUL M G, SARAY M T, SOROKINA L V, SHOKUHFAR T, GONÇALVES J M, SHAHBAZIAN-YASSAR R. Electrochemical synthesis of high entropy hydroxides and oxides boosted by hydrogen evolution reaction[J]. Cell Rep. Phys. Sci., 2022, 3(4): 100847
doi: 10.1016/j.xcrp.2022.100847
PAVITHRA C L P, JANARDHANA R K S K, REDDY K M, MURAPAKA C, WANG X D, DEY S R. One-dimensional Co-Cu-Fe-Ni-Zn high-entropy alloy nanostructures[J]. Mater. Res. Lett., 2021, 9(7): 285-290
doi: 10.1080/21663831.2021.1896588
ZHANG X L, ZHANG W B, YIN Y, THEINT M M, GUO S B, CHAI S S, ZHOU X, MA X J. Sol-gel method preparation and high-rate energy storage of high-entropy ceramic (FeCoCrMnNi)C porous powder[J]. Ceram. Int., 2023, 49(17, Part B): 29327-29338
doi: 10.1016/j.ceramint.2023.06.228
WANG G, QIN J, FENG Y Y, FENG B X, YANG S J, WANG Z, ZHAO Y X, WEI J. Sol-gel synthesis of spherical mesoporous high-entropy oxides[J]. ACS Appl. Mater. Interfaces, 2020, 12(40): 45155-45164
doi: 10.1021/acsami.0c11899
MUSHIANA T, KHAN M, ABDULLAH M I, ZHANG N, MA M M. Facile sol-gel preparation of high-entropy multielemental electrocatalysts for efficient oxidation of methanol and urea[J]. Nano Res., 2022, 15(6): 5014-5023
doi: 10.1007/s12274-022-4186-9
NIU B, ZHANG F, PING H, LI N, ZHOU J Y, LEI L W, XIE J J, ZHANG J Y, WANG W M, FU Z Y. Sol-gel autocombustion synthesis of nanocrystalline high-entropy alloys[J]. Sci. Rep., 2017, 7(1): 3421
doi: 10.1038/s41598-017-03644-6
HUSSAIN A, ZHENG Y H, WANG Q Y, CUI Y B. Synthesis of high-entropy oxides derived from metal-organic frameworks and their catalytic performance for total toluene oxidation[J]. New J. Chem., 2024, 48(39): 17237-17245
doi: 10.1039/D4NJ02650K
SIVANANTHAM A, LEE H, HWANG S W, AHN B, CHO I S. Preparation, electrical and electrochemical characterizations of CuCoNiFeMn high-entropy-alloy for overall water splitting at neutral-pH[J]. J. Mater. Chem. A, 2021, 9(31): 16841-16851
doi: 10.1039/D1TA02621F
ZHANG Y, LU T, YE Y K, DAI W J, ZHU Y A, PAN Y. Stabilizing oxygen vacancy in entropy-engineered CoFe2O4-type catalysts for co-prosperity of efficiency and stability in an oxygen evolution reaction[J]. ACS Appl. Mater. Interfaces, 2020, 12(29): 32548-32555
doi: 10.1021/acsami.0c05916
YU Y X, XU J L, ZHANG L W, MA Y C, LUO J M. Electrochemically treated AlCoCrFeNi high entropy alloy as a self-supporting electrode for overall water splitting[J]. Int. J. Hydrog. Energy, 2024, 72: 209-219
doi: 10.1016/j.ijhydene.2024.05.350
YAO Y G, HUANG Z N, XIE P F, LACEY S D, JACOB R J, XIE H, CHEN F J, NIE A, PU T, REHWOLDT M, YU D, ZACHARIAH M R, WANG C, SHAHBAZIAN-YASSAR R, LI J, HU L B. Carbothermal shock synthesis of high-entropy-alloy nanoparticles[J]. Science, 2018, 359(6383): 1489-1494
doi: 10.1126/science.aan5412
CUI X Y, LIU Y C, WANG X Y, TIAN X L, WANG Y X, ZHANG G, LIU T, DING J, HU W B, CHEN Y N. Rapid high-temperature liquid shock synthesis of high-entropy alloys for hydrogen evolution reaction[J]. ACS Nano, 2024, 18(4): 2948-2957
doi: 10.1021/acsnano.3c07703
GLASSCOTT M W, PENDERGAST A D, GOINES S, BISHOP A R, HOANG A T, RENAULT C, DICK J E. Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis[J]. Nat. Commun., 2019, 10(1): 2650
doi: 10.1038/s41467-019-10303-z
GAO S J, HAO S Y, HUANG Z N, YUAN Y F, HAN S, LEI L C, ZHANG X W, SHAHBAZIAN-YASSAR R, LU J. Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis[J]. Nat. Commun., 2020, 11(1): 2016
doi: 10.1038/s41467-020-15934-1
LAW Z X, TSAI D H. Design of aerosol nanoparticles for interfacial catalysis[J]. Langmuir, 2022, 38(30): 9037-9042
doi: 10.1021/acs.langmuir.2c01155
YANG Y, ROMANO M, FENG G J, WANG X Z, WU T, HOLDREN S, ZACHARIAH M R. Growth of sub-5 nm metal nanoclusters in polymer melt aerosol droplets[J]. Langmuir, 2018, 34(2): 585-594
doi: 10.1021/acs.langmuir.7b02900
KOBAYASHI Y, TEAH H Y, YOKOYAMA S, SHOJI R, HANADA N. A molten salt synthesis method of the high-entropy alloy CrMnFeCoNi for high catalytic performance and low life cycle GHG emissions[J]. ACS Sustain. Chem. Eng., 2022, 10(46): 15046-15057
doi: 10.1021/acssuschemeng.2c04007
YANG Y, SONG B A, KE X, XU F Y, BOZHILOV K N, HU L B, SHAHBAZIAN-YASSAR R, ZACHARIAH M R. Aerosol synthesis of high entropy alloy nanoparticles[J]. Langmuir, 2020, 36(8): 1985-1992
doi: 10.1021/acs.langmuir.9b03392
QIAO H Y, WANG X Z, DONG Q, ZHENG H K, CHEN G, HONG M, YANG C P, WU M, HE K, HU L B. A high-entropy phosphate catalyst for oxygen evolution reaction[J]. Nano Energy, 2021, 86: 106029
doi: 10.1016/j.nanoen.2021.106029
PAN Y D, GAO J K, LV E J, LI T T, XU H, SUN L, NAIRAN A, ZHANG Q C. Integration of alloy segregation and surface Co-O hybridization in carbon-encapsulated CoNiPt alloy catalyst for superior alkaline hydrogen evolution[J]. Adv. Funct. Mater., 2023, 33(41): 2303833
doi: 10.1002/adfm.202303833
CAO J, LI H C, PU J X, ZENG S C, LIU L M, ZHANG L, LUO F H, MA L, ZHOU K C, WEI Q P. Hierarchical NiMo alloy microtubes on nickel foam as an efficient electrocatalyst for hydrogen evolution reaction[J]. Int. J. Hydrog. Energy, 2019, 44(45): 24712-24718
doi: 10.1016/j.ijhydene.2019.07.229
DA Y M, JIANG R, TIAN Z L, CHEN G W, XIAO Y K, ZHANG J F, XI S B, DENG Y D, CHEN W, HAN X P, HU W B. Development of a novel Pt3V alloy electrocatalyst for highly efficient and durable industrial hydrogen evolution reaction in acid environment[J]. Adv. Energy Mater., 2023, 13(16): 2300127
doi: 10.1002/aenm.202300127
GUO H Y, FANG Z W, LI H, FERNANDEZ D, HENKELMAN G, HUMPHREY S M, YU G H. Rational design of rhodium-iridium alloy nanoparticles as highly active catalysts for acidic oxygen evolution[J]. ACS Nano, 2019, 13(11): 13225-13234
doi: 10.1021/acsnano.9b06244
LI L M, WANG Y, NAZMUTDINOV R R, ZAIROV R R, SHAO Q, LU J M. Magnetic field enhanced cobalt iridium alloy catalyst for acidic oxygen evolution reaction[J]. Nano Lett., 2024, 24(20): 6148-6157
doi: 10.1021/acs.nanolett.4c01623
CAI W Z, CHEN R, YANG H B, TAO H B, WANG H Y, GAO J J, LIU W, LIU S, HUNG S F, LIU B. Amorphous versus crystalline in water oxidation catalysis: A case study of NiFe alloy[J]. Nano Lett., 2020, 20(6): 4278-4285
doi: 10.1021/acs.nanolett.0c00840
SHI Y Y, ZHENG D W, ZHANG X, LV K, WANG F H, DONG B B, WANG S Y, YANG C X, LI J M, YANG F Y, HAO L Y, YIN L J, XU X, XIAN Y X, AGATHOPOULOS S. Self-supported ceramic electrode of 1T-2H MoS2 grown on the TiC membrane for hydrogen production[J]. Chem. Mater., 2021, 33(15): 6217-6226
doi: 10.1021/acs.chemmater.1c01965
ZHANG T, WU M Y, YAN D Y, MAO J, LIU H, HU W B, DU X W, LING T, QIAO S Z. Engineering oxygen vacancy on NiO nanorod arrays for alkaline hydrogen evolution[J]. Nano Energy, 2018, 4: 103-109
ZHAO F Z, MAO X Y, ZHENG X, LIU H C, ZHU L Q, LI W P, WANG Z, CHEN H N. Roles of the self-reconstruction layer in the catalytic stability of a NiFeP catalyst during the oxygen evolution reaction[J]. J. Mater. Chem. A, 2023, 11(1): 276-286
doi: 10.1039/D2TA06514B
WANG B Q, HAN X, GUO C, JING J, YANG C, LI Y P, HAN A J, WANG D S, LIU J F. Structure inheritance strategy from MOF to edge-enriched NiFe-LDH array for enhanced oxygen evolution reaction[J]. Appl. Catal. B‒Environ., 2021, 298: 120580
doi: 10.1016/j.apcatb.2021.120580
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
Yongwei ZHANG , Chuang ZHU , Wenbin WU , Yongyong MA , Heng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378
Hao GUO , Tong WEI , Qingqing SHEN , Anqi HONG , Zeting DENG , Zheng FANG , Jichao SHI , Renhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085
Jianchun Wang , Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082
Minglei Sun , Zhong-Yong Yuan . Valorization strategies for electrodegradation of nitrogenous wastes in sewage. Acta Physico-Chimica Sinica, 2025, 41(9): 100108-. doi: 10.1016/j.actphy.2025.100108
Ruizhi Duan , Xiaomei Wang , Panwang Zhou , Yang Liu , Can Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-. doi: 10.1016/j.actphy.2025.100111
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
Fanpeng Meng , Fei Zhao , Jingkai Lin , Jinsheng Zhao , Huayang Zhang , Shaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095
Qingcui Yang , Wen Liu , Li Cao , Chen Tang , Bing Xu , Jie Zhao . For Entropy Hurts: Life Thrives on Negative Entropy. University Chemistry, 2024, 39(9): 151-156. doi: 10.12461/PKU.DXHX202402029
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
(a) Outer ring presents the reactions in acid solutions, and the inner ring presents the reactions in alkaline solutions.
(a) Outer ring presents the reactions in acid solutions, and the inner ring presents the reactions in alkaline solutions; □ stands for oxygen vacancy.
Inset: LSV curves before and after stability test and the morphology image after stability test.
Inset: LSV curves before and after stability test.
Inset: schematic diagram of overall water splitting device.