Citation: Jie WEI, Qing ZHOU, Dandan DING, Xiang JING, Fei LI. Photothermal toxicity of Prussian blue nanoparticles to cervical cancer cells[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(11): 2345-2357. doi: 10.11862/CJIC.20240435 shu

Photothermal toxicity of Prussian blue nanoparticles to cervical cancer cells

  • Corresponding author: Fei LI, lifei@zknu.edu.cn
  • Received Date: 9 December 2024
    Revised Date: 30 July 2025

Figures(10)

  • To investigate the photothermal toxicity of Prussian blue nanoparticles (PB NPs) on cervical cancer cells (HeLa cells) and their underlying mechanisms, uniformly sized and well-dispersed PB NPs were synthesized. Using HeLa cells as the experimental model, techniques such as MTT assay, confocal microscopy, and flow cytometry were employed to evaluate the effects of PB NPs on cell viability, membrane permeability, apoptosis, cell cycle arrest, and reactive oxygen species (ROS) generation. The MTT assay revealed that PB NPs inhibited HeLa cell proliferation in a concentration and laser power-dependent manner. At a mass concentration of 50 μg·mL-1 and an 808 nm laser irradiation with a power density of 0.2 W·cm-2, PB NPs reduced HeLa cell viability to 24.2%. Trypan blue staining and Calcein-AM/PI double-staining confocal microscopy demonstrated that the photothermal cytotoxicity of PB NPs primarily manifests as increased cell membrane permeability. Annexin V-FITC flow cytometry indicated that PB NPs induce apoptosis in HeLa cells. Furthermore, DCFH-DA fluorescence assays and flow cytometry showed that 20 μg·mL-1 PB NPs under 808 nm laser irradiation (0.3 W·cm-2) elevated intracellular ROS levels by 11.5-fold and induced cell cycle arrest at the G2/M phase. The above results suggest that the photothermal toxicity effect of PB NPs on HeLa cells is achieved by increasing cell membrane permeability, inducing cell cycle arrest, elevating ROS generation, and triggering apoptosis.
  • 加载中
    1. [1]

      BRAY F, LAVERSANNE M, SUNG H, Ferlay J, Siegel R L, Soerjomataram I, Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA‒Cancer J. Clin., 2024,74(3):229-263. doi: 10.3322/caac.21834

    2. [2]

      DASH S R, KUNDU C N. Photothermal therapy: A new approach to eradicate cancer[J]. Curr. Nanosci., 2022,18(1):31-47. doi: 10.2174/1573413717666210301112058

    3. [3]

      LI X S, LOVELL J F, YOON J. Clinical development and potential of photothermal and photodynamic therapies for cancer[J]. Nat. Rev. Clin. Oncol., 2020,17(11):657-674. doi: 10.1038/s41571-020-0410-2

    4. [4]

      ZHU L J, XIONG J B, DU Z, MA R, ZHANG X L, NUERNISHA A. Application of near-infrared fluorescence-photothermal nanoparticles in photothermal therapy for cervical cancer[J]. Chinese Journal of Biomedical Engineering, 2024,43(4):499-507.

    5. [5]

      GU Y L, ZHU J Y, XIONG J B, NUERNISHA A. Application of Prussian blue nanoparticles in biomedical diagnosis and therapy[J]. Chinese Journal of Medical Physics, 2023,40(9):1161-1166.

    6. [6]

      GAO X R, WANG Q W, CHENG C, LIN S J, LIN T, TING LIN, LIU C, HAN X. The application of Prussian blue nanoparticles in tumor diagnosis and treatment[J]. Sensors, 2020,20(23):1-22. doi: 10.1109/JSEN.2020.3032359

    7. [7]

      FU G L, LIU W, FENG S S, YUE X L. Prussian blue nanoparticles operate as a new generation of photothermal ablation agents for cancer therapy[J]. Chem. Commun., 2012,48(94)11567. doi: 10.1039/c2cc36456e

    8. [8]

      ZHANG S P, CHENG Y X, REN L, WEN K, Lü X L, YE S F, ZHOU X. Synthesis and photothermal properties of morphology-controlled Prussian blue nanoparticles[J]. Chem. J. Chinese Universities, 2018,39(2):359-366.

    9. [9]

      TANG K Y, LI X, HU Y L, ZHANG X N, NAN L, QIANG F, SHAO J J, LI S K, XIU W J, SONG Y N, YANG D L, ZHANG J J. Recent advances in Prussian blue-based photothermal therapy in cancer treatment[J]. Biomater. Sci., 2023,11(13):4411-4429. doi: 10.1039/D3BM00509G

    10. [10]

      HUANG Y F, SEFAH K, BAMRUNGSAP S, CHANG H T, TAN W. Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods[J]. Langmuir, 2008,24(20):11860-11865. doi: 10.1021/la801969c

    11. [11]

      LIU T, TIAN Y T, GAO K, HAN X W, MIN R A, ZHAO W J, YIN C X. A photothermal agent with high photothermal conversion efficiency and high stability for cancer therapy[J]. Chinese J. Inorg. Chem., 2024,40(8):1622-1632. doi: 10.11862/CJIC.20240107

    12. [12]

      TIAN Q W, JIANG F R, ZOU R J, LIU Q, CHEN Z G, ZHU M F, YANG S P, WANG J L, WANG J H, HU J Q. Hydrophilic Cu9S5 nanocrystals: A photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo[J]. ACS Nano, 2011,5(12):9761-9771. doi: 10.1021/nn203293t

    13. [13]

      KE H T, WANG J R, DAI Z F, JIN Y S, QU E Z, XING Z W, GUO C X, YUE X L, LIU J B. Gold-nanoshelled microcapsules: A theranostic agent for ultrasound contrast imaging and photothermal therapy[J]. Angew. Chem.‒Int. Edit., 2011,50(13):3017-3021. doi: 10.1002/anie.201008286

    14. [14]

      ZHANG X M, LI J Y, MA B, LI B S, SHI L L, GAO S G. Photothermal therapy effect and mechanism of Prussian blue nanoparticles on esophageal squamous cell carcinoma[J]. Chinese Journal of Cancer Prevention and Treatment, 2025,32(14):850-861.

    15. [15]

      ESTELRICH J, BUSQUETS M. Prussian Blue: A nanozyme with versatile catalytic properties[J]. Int. J. Mol. Sci., 2021,22(11)5993. doi: 10.3390/ijms22115993

    16. [16]

      WANG Q, LIU X, SUN Y J, YANG C. Prussian blue-loaded CoOOH nanosheets for antioxidant activity detection[J]. Modern Chemical Industry, 2023,43(2):234-238.

    17. [17]

      BEI Y, LI W J, LI M Y, SU M, ZHANG J, HUANG Y, ZHU Y Z, LI J L, WU Y. Prussian blue nanoparticles promote diabetic skin wound healing[J]. Chinese Journal of Tissue Engineering Research, 2024,28(10):1526-1532.

    18. [18]

      YE J J, ZHANG W X, NI J C, HU S R. Detection of hydrogen peroxide and glutathione by Fe-Co Prussian blue colorimetric method[J]. Journal of Minnan Normal University (Natural Science Edition), 2024,37(2):52-63.

    19. [19]

      ZENG X M, YAN S G, CHEN P, DU W, LIU B F. Modulation of tumor microenvironment by metal-organic-framework-derived nanoenzyme for enhancing nucleus-targeted photodynamic therapy[J]. Nano Res., 2020,13(6):1527-1535. doi: 10.1007/s12274-020-2746-4

    20. [20]

      ZHAO Q, LIU Z. Research progress on tumor hypoxia regulation and radiotherapy enhancement based on nano-biomaterials[J]. Cancer Research on Prevention and Treatment, 2021,48(2):109-114.

    21. [21]

      XIAO J J, LI Y, LIANG J. Hypoxic microenvironment and tumor immune response[J]. Journal of International Oncology, 2017,44(1):31-33.

    22. [22]

      PARK J E, DUTTA B, TSE S W, GUPTA N, TAN C F, LOW J K, YEOH K W, KON O L, TAM J P, SZE S K. Hypoxia-induced tumor exosomes promote M2-like macrophage polarization of infiltrating myeloid cells and microRNA-mediated metabolic shift[J]. Oncogene, 2019,38(26):5158-5173. doi: 10.1038/s41388-019-0782-x

    23. [23]

      YU C, ZHOU Z G, WANG J, SUN J, LIU W, SUN Y N, KONG B, YANG H, YANG S P. In depth analysis of apoptosis induced by silica coated manganese oxide nanoparticles in vitro[J]. J. Hazard. Mater., 2014,283:519-528.

    24. [24]

      PANAGOPOULOS A, ALTMEYER M. The hammer and the dance of cell cycle control[J]. Trends Biochem. Sci., 2021,46(4):301-314. doi: 10.1016/j.tibs.2020.11.002

    25. [25]

      WANG X, CHEN S T, HOU Z H, YANG R, ZHANG R W. The effects of curcumin on prostate cancer cell proliferation, invasion, and cell cycle[J]. Journal of Beihua University(Natural Science Edition), 2024,25(6):770-775.

    26. [26]

      WANG C, ZHOU H M, KURBONIYON M S, TANG Y P, CAI Z M, NING S F, ZHANG L T, LIANG X Q. Chemodynamic PtMn nanocubes for effective photothermal ROS storm a key anti-tumor therapy in-vivo[J]. Int. J. Nanomed., 2024,19:5045-5056. doi: 10.2147/IJN.S455936

    27. [27]

      LI S S, SHANG L, XU B L, WANG S H, GU K, WU Q Y, SUN Y, ZHANG Q H, YANG H L, ZHANG F R, GU L, ZHANG T R, LIU H Y. A nanozyme with photo‐enhanced dual enzyme‐like activities for deep pancreatic cancer therapy[J]. Angew. Chem.‒Int. Edit., 2019,58(36):12624-12631. doi: 10.1002/anie.201904751

    28. [28]

      ZHAO Y Y, YANG J, SHAN G, LIU Z Y, CUI A N, WANG A L, CHEN Y W, LIU Y C. Photothermal-enhanced tandem enzyme-like activity of Ag2-xCuxS nanoparticles for one-step colorimetric glucose detection in unprocessed human urine[J]. Sens. Actuator B‒Chem., 2020,305127420. doi: 10.1016/j.snb.2019.127420

    29. [29]

      ZHANG W X, LI W Y, SHU Y, WANG J H. Manganese-enriched Prussian blue nanohybrids with smaller electrode potential and lower charge transfer resistance to enhance combination therapy[J]. Colloid Surf. B‒Biointerfaces, 2024,241114045. doi: 10.1016/j.colsurfb.2024.114045

    30. [30]

      YAO J L, QIU Y, XING J, LI Z H, ZHANG A, TU K, PENG M J, WU X X, YANG F, WU A. Highly-efficient gallium-interference tumor therapy mediated by gallium-enriched Prussian blue nanomedicine[J]. ACS Nano, 2024,18(7):5556-5570.

    31. [31]

      LIU Y, QUAN X, LI J, HUO J W, LI X, ZHAO Z P, LI S M, WAN J, LI J, LIU S, WANG T, ZHANG X, GUAN B, WEN R, ZHAO Z W, WANG C R, BAI C L. Liposomes embedded with PEGylated iron oxide nanoparticles enable ferroptosis and combination therapy in cancer[J]. Natl. Sci. Rev., 2023,10(1):246-258.

    32. [32]

      WANG P F, SUN S H, BAI G S, ZHANG R Q, LIANG F, ZHANG Y Z. Nano-sized Prussian blue and its analogs for bioimaging and cancer theranostics[J]. Acta Biomater., 2024,176:77-98. doi: 10.1016/j.actbio.2023.12.047

    33. [33]

      ZHANG Y J, FENG Y Y, HUANG Y Q, WANG Y F, QIU L, LIU Y L, PENG S S, LI R, KUANG N Z, SHI Q F, SHI Y M, CHEN Y J, JOSHI R, WANG Z G, YUAN K, MIM W P. Tumor-targeted gene silencing IDO synergizes PTT-induced apoptosis and enhances anti-tumor immunity[J]. Front. Immunol., 2020,11968. doi: 10.3389/fimmu.2020.00968

    34. [34]

      TAO L, FU R, WANG X P. LL-202, A newly synthesized flavonoid, inhibits tumor growth via inducing G2/M phase arrest and cell apoptosis in MCF-7 human breast cancer cells in vitro and in vivo[J]. Toxicol. Lett., 2014,228(1):1-12. doi: 10.1016/j.toxlet.2014.04.002

    35. [35]

      MUENYI C S, TRIVEDI A P, HELM C W, STATES J C. Cisplatin plus sodium arsenite and hyperthermia induces pseudo-G1 associated apoptotic cell death in ovarian cancer cells[J]. Toxicol. Sci., 2014,139(1):74-82. doi: 10.1093/toxsci/kfu029

    36. [36]

      XIE M Z, GONG T J, WANG Y T, LI Z Z, LU M X, LUO Y, MIN L, TU C Q, ZHANG X D, ZENG Q, ZHOU Y. Advancements in photothermal therapy using near-infrared light for bone tumors[J]. Int. J. Mol. Sci., 2024,25(8)4139. doi: 10.3390/ijms25084139

  • 加载中
    1. [1]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    2. [2]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    3. [3]

      Siwei Lv Tantian Tan Xinyue Li Siyan Zhang Mingyuan Zhang Minghao Li Hangshuo Guo Zhaorong Li Liangjie Dong Fengshuo Zhang Junlong Zhao . Competition of the “King of Transboundary Medicine”. University Chemistry, 2024, 39(9): 102-108. doi: 10.12461/PKU.DXHX202403034

    4. [4]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    5. [5]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

    6. [6]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    7. [7]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    8. [8]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    9. [9]

      Tianyang Yu Hao Wei . “Illness Enters through the Mouth”: A Brief Overview of Toxic Chemical Substances in Common Foods. University Chemistry, 2025, 40(7): 225-231. doi: 10.12461/PKU.DXHX202409083

    10. [10]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    11. [11]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    12. [12]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    13. [13]

      Yichang Liu Li An Dan Qu Zaicheng Sun . “双碳”背景下的综合设计实验——以PbCrO4催化甲基蓝的光降解速率常数测定为例. University Chemistry, 2025, 40(6): 222-229. doi: 10.12461/PKU.DXHX202407105

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    16. [16]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    17. [17]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    18. [18]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    19. [19]

      Ruolin CHENGYue WANGXiyao NIUHuagen LIANGLing LIUShijian LU . Efficient photothermal catalytic CO2 cycloaddition over W18O49/rGO composites. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1276-1284. doi: 10.11862/CJIC.20240424

    20. [20]

      Ziyang LongQuanzheng LiChengliang ZhangHaifeng Shi . BiVO4/WO3-x S-scheme heterojunctions with amplified internal electric field for boosting photothermal-catalytic activity. Acta Physico-Chimica Sinica, 2025, 41(10): 100122-0. doi: 10.1016/j.actphy.2025.100122

Metrics
  • PDF Downloads(1)
  • Abstract views(324)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return