Citation: Tinghui AN, Dong XIANG, Jiaqi LI, Jiawei WANG, Shuming YU, Nan WANG, Kedi CAI. Research progress on the application of laser synthesis technology for electrochemical functional materials[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(9): 1731-1754. doi: 10.11862/CJIC.20240412 shu

Research progress on the application of laser synthesis technology for electrochemical functional materials

Figures(11)

  • Laser technology has become a widely used synthesis technology in recent years, offering certain controllability, reduced contact, and low pollution, with simple and efficient operation. This technology can reduce material waste and energy consumption, thereby minimizing the environmental impact. Electrochemical functional materials with porous structures prepared by laser synthesis technology have a good potential for application in the field of energy storage, such as photoelectric catalysis, batteries, supercapacitors, etc. The application of laser synthesis technology can realize the efficient use of resources and the sustainable development of the environment. In this paper, the principle of laser synthesis technology and its application in energy storage and biosensing are reviewed, and the opportunities and challenges of lasers are discussed. With deepening research on laser-synthesized materials, laser synthesis technology for energy storage will be rapidly developed.
  • 加载中
    1. [1]

      XU X J. Sixty years of high energy lasers: Review and prospects[J]. High Power Laser and Particle Beams, 2020, 32(1): 30-34

    2. [2]

      BIAN J, ZHOU L B Y, WAN X D, ZHU C, YANG B, HUANG Y A. Laser transfer, printing, and assembly techniques for flexible electronics[J]. Adv. Electron. Mater., 2019, 5(7): 1800900  doi: 10.1002/aelm.201800900

    3. [3]

      PALNEEDI H, PARK J H, MAURYA D, PEDDIGARI M, HWANG G T, ANNAPUREDDY V, KIM J W, CHOI J J, HAHN B D, PRIYA S, LEE K J, RYU J. Laser irradiation of metal oxide films and nanostructures: Applications and advances[J]. Adv. Mater., 2018, 30(14): 1705148  doi: 10.1002/adma.201705148

    4. [4]

      HONG S, LEE H, YEO J, KO S H. Digital selective laser methods for nanomaterials: From synthesis to processing[J]. Nano Today, 2016, 11(5): 547-564  doi: 10.1016/j.nantod.2016.08.007

    5. [5]

      YANG C, HUANG Y X, CHENG H H, JIANG L, QU L T. Rollable, stretchable, and reconfigurable graphene hygroelectric generators[J]. Adv. Mater., 2019, 31(2): 1805705  doi: 10.1002/adma.201805705

    6. [6]

      SAPRA N V, YANG K Y, VERCRUYSSE D, LEEDLE K J, BLACK D S, ENGLAND R J, SU L, TRIVEDI R, MIAO Y, SOLGAARD O, BYER R L, VUČKOVIĆ J. On-chip integrated laser-driven particle accelerator[J]. Science, 2020, 367(6473): 79-83  doi: 10.1126/science.aay5734

    7. [7]

      SERGEEV A A, PAVLOV D V, KUCHMIZHAK A A, LAPINE M V, YIU W K, DONG Y, KE N, JUODKAZIS S, ZHAO N, KERSHAW S V, ROGACH A L. Tailoring spontaneous infrared emission of HgTe quantum dots with laser-printed plasmonic arrays[J]. Light‒Sci. Appl., 2020, 9(1): 16

    8. [8]

      ZHAO L L, LIU Z, CHEN D, LIU F, YANG Z Y, LI X, YU H H, LIU H, ZHOU W J. Laser synthesis and microfabrication of micro/nanostructured materials toward energy conversion and storage[J]. Nano‒Micro Lett., 2021, 13(1): 49

    9. [9]

      Research Group of Strategic Research on China′s Laser Technology and Its Application by 2035. Strategic research on China′s laser technology and its application by 2035[J]. Strategic study of CAE, 2020, 22(3): 1-6

    10. [10]

      XIA S D, ZHOU G Y, FAN L. New carbon dioxide laser power supply design based on SG3525[J]. Microprocessor, 2014, 35(5): 59-62

    11. [11]

      LI H Q. Principle of semiconductor laser and its application[J]. Telecomm Power Technology, 2022, 39(10): 89-91

    12. [12]

    13. [13]

      MALLEVILLE M A, DAULIAT R, BENO T A, LECONTE B, DARWICH D, JEU R D, JAMIER R, SCHUSTER K, ROY P. Experimental study of the mode instability onset threshold in high-power FA-LPF lasers[J]. Opt. Lett., 2017, 42(24): 5230-5233  doi: 10.1364/OL.42.005230

    14. [14]

      BOYD G D, GORDON J P. Confocal multimode resonator for millimeter through optical wavelength masers[J]. The Bell System Technical Journal, 1961, 40(2): 489-508  doi: 10.1002/j.1538-7305.1961.tb01626.x

    15. [15]

      ZHANG Q L, XU J, ZHANG L, TIAN Z Y, MIAO Y, GAO X M. Tunable laser mode evolution principle by modulated gas laser resonator[J]. Optik, 2019, 186: 241-252  doi: 10.1016/j.ijleo.2019.04.080

    16. [16]

      JOE D J, KIM S, PARK J H, PARK D Y, LEE H E, IM T H, CHOI I, RUOFF R S, LEE K J. Laser-material interactions for flexible applications[J]. Adv. Mater., 2017, 29(26): 1606586  doi: 10.1002/adma.201606586

    17. [17]

      ATTALLAH A H, ABDULWAHID F S, ALI Y A, HAIDER A J. Effect of liquid and laser parameters on fabrication of nanoparticles via pulsed laser ablation in liquid with their applications: A review[J]. Plasmonics, 2023, 18(4): 1307-1323  doi: 10.1007/s11468-023-01852-7

    18. [18]

      NASER H, SHANSHOOL H M, IMHAN K I. Parameters affecting the size of gold nanoparticles prepared by pulsed laser ablation in liquid[J]. Braz. J. Phys., 2021, 51(3): 878-898  doi: 10.1007/s13538-021-00875-x

    19. [19]

      LI L, ZHANG J Y, WANG Y Y, ZAMAN F U, ZHANG Y M, HOU L R, YUAN C Z. Laser irradiation construction of nanomaterials toward electrochemical energy storage and conversion: Ongoing progresses and challenges[J]. InfoMat, 2021, 3(12): 1393-1421  doi: 10.1002/inf2.12218

    20. [20]

      GAO K, WANG B, TAO L, CUNNING B V, ZHANG Z P, WANG S Y, RUOFF R S, QU L T. Efficient metal-free electrocatalysts from N-doped carbon nanomaterials: Mono-doping and Co-doping[J]. Adv. Mater., 2019, 31(13): 1805121  doi: 10.1002/adma.201805121

    21. [21]

      PAUL R, DU F, DAI L M, DING Y, WANG Z L, WEI F, ROY A. 3D heteroatom-doped carbon nanomaterials as multifunctional metal-free catalysts for integrated energy devices[J]. Adv. Mater., 2019, 31(13): 1805598  doi: 10.1002/adma.201805598

    22. [22]

      YE R Q, JAMES D K, TOUR J M. Laser-induced graphene: From discovery to translation[J]. Adv. Mater., 2019, 31(1): 1803621  doi: 10.1002/adma.201803621

    23. [23]

      HOPULELE I, AXINTE M, NEJNERU C. Alloys with acoustic properties[J]. Appl. Mech. Mater., 2014, 657: 417-421  doi: 10.4028/www.scientific.net/AMM.657.417

    24. [24]

      GENNES P G, PINCUS P A. Superconductivity of metals and alloys[M]. Oxfordshire: Taylor & Francis, 2018: 1-274

    25. [25]

      TAKATA N, LEE S H, TSUJI N. Ultrafine grained copper alloy sheets having both high strength and high electric conductivity[J]. Mater. Lett., 2009, 63: 1757-1760  doi: 10.1016/j.matlet.2009.05.021

    26. [26]

      BOLEY J W, WHITE E L, KRAMER R K. Mechanically sintered gallium-indium nanoparticles[J]. Adv. Mater., 2015, 27(14): 2355-2360  doi: 10.1002/adma.201404790

    27. [27]

      SINGH A K, XU Q. Synergistic catalysis over bimetallic alloy nanoparticles[J]. ChemCatChem, 2013, 5(3): 652-676  doi: 10.1002/cctc.201200591

    28. [28]

      MA R Q, JIANG H Q, WANG C, ZHAO C B, DENG H X. Multivariate MOFs for laser writing of alloy nanoparticle patterns[J]. Chem. Commun., 2020, 56(18): 2715-2718  doi: 10.1039/C9CC09144K

    29. [29]

      LIN Z, YUE J, LIANG L, TANG B, LIU B, REN L, LI Y, JIANG L L. Rapid synthesis of metallic and alloy micro/nanoparticles by laser ablation towards water[J]. Appl. Surf. Sci., 2020, 504: 144461  doi: 10.1016/j.apsusc.2019.144461

    30. [30]

      WANG B, WANG C, YU X W, CAO Y, GAO L F, WU C P, YAO Y F, LIN Z Q, ZOU Z G. General synthesis of high-entropy alloy and ceramic nanoparticles in nanoseconds[J]. Nat. Synth., 2022, 1(2): 138-146  doi: 10.1038/s44160-021-00004-1

    31. [31]

      JIANG H Q, TONG L, LIU H D, XU J, JIN S Y, WANG C, HU X J, YE L, DENG H X, CHENG G J. Graphene-metal-metastructure monolith via laser shock-induced thermochemical stitching of MOF crystals[J]. Matter, 2020, 2(6): 1535-1549  doi: 10.1016/j.matt.2020.03.003

    32. [32]

      CASTELLANOS-GOMEZ A, BARKELID M, GOOSSENS A M, CALADO V E, VAN DER ZANT H S J, STEELE G A. Laser-thinning of MoS2: On demand generation of a single-layer semiconductor[J]. Nano Lett., 2012, 12(6): 3187-3192  doi: 10.1021/nl301164v

    33. [33]

      ZHU D Z, QIAO M, YAN J F, XIE J W, GUO H, DENG S F, HE G Z, ZHAO Y Z, LUO M. Three-dimensional patterning of MoS2 with ultrafast laser[J]. Nanoscale, 2023, 15(36): 14837-14846  doi: 10.1039/D3NR01669B

    34. [34]

      ZHANG H F, TU X, WU Z Y, GUO J Q, FEI L F, LIAO X X, YUAN J R, WAN S Y, BIE Y Q, ZHOU Y B. Laser irradiation induced structural transformation in layered transition metal trichalcogenide nanoflakes[J]. iScience, 2023, 26(10): 107895  doi: 10.1016/j.isci.2023.107895

    35. [35]

      LIU X Y, ZHANG T, XU M C, LI Y, WANG H Q, CHEN Y K, ZHANG X Z H, WANG Z N, LI X Y, ZHOU W J, LIU H. Fabrication of patterned transparent conductive glass via laser metal transfer for efficient electrical heating and antibacteria[J]. Nano Res., 2024, 17(3): 1578-1584  doi: 10.1007/s12274-023-5954-x

    36. [36]

      LI G Q. Design and development of a lens-walled compound parabolic concentrator-A review[J]. J. Therm. Sci., 2019, 28(1): 17-29  doi: 10.1007/s11630-019-1083-3

    37. [37]

      KWAK B S, CHAE J, KANG M. Design of a photochemical water electrolysis system based on a W-typed dye-sensitized serial solar module for high hydrogen production[J]. Appl. Energy, 2014, 125: 189-196  doi: 10.1016/j.apenergy.2014.03.012

    38. [38]

      KAUR G, KULKARNI A P, GIDDEY S, BADWAL S P S. Ceramic composite cathodes for CO2 conversion to CO in solid oxide electrolysis cells[J]. Appl. Energy, 2018, 221: 131-138  doi: 10.1016/j.apenergy.2018.03.176

    39. [39]

      BOLTON J R. Photochemical conversion and storage of solar energy[J]. J. Solid State Chem., 1977, 22(1): 3-8  doi: 10.1016/0022-4596(77)90183-9

    40. [40]

      WALLACE C, GRIFFITHS K, DALE B L, ROBERTS S, PARSONS J, GRIFFIN J M, GÖRTZ V. Understanding solid-state photochemical energy storage in polymers with azobenzene side groups[J]. ACS Appl. Mater. Interfaces, 2023, 15(26): 31787-31794  doi: 10.1021/acsami.3c04631

    41. [41]

      BÜRGIN T, OGAWA T, WENGER O S. Better covalent connection in a molecular triad enables more efficient photochemical energy storage[J]. Inorg. Chem., 2023, 62(33): 13597-13607  doi: 10.1021/acs.inorgchem.3c02008

    42. [42]

      LI N B, YANG D J, SHAO Y, LIU Y T, TANG J B, YANG L P, SUN T Y, ZHOU W I, LIU H, XUE G B. Nanostructured black aluminum prepared by laser direct writing as a high-performance plasmonic absorber for photothermal/electric conversion[J]. ACS Appl. Mater. Interfaces, 2021, 13(3): 4305-4315  doi: 10.1021/acsami.0c17584

    43. [43]

      LIU X Y, XING C S, YANG F, LIU Z, WANG Y J, DONG T J, ZHAO L L, LIU H, ZHOU W J. Strong interaction over Ru/defects-rich aluminium oxide boosts photothermal CO2 methanation via microchannel flow-type system[J]. Adv. Energy Mater., 2022, 12(31): 2201009  doi: 10.1002/aenm.202201009

    44. [44]

      POMERANTSEVA E, BONACCORSO F, FENG X L, CUI Y, GOGOTSI Y. Energy storage: The future enabled by nanomaterials[J]. Science, 2019, 366(6468): eaan8285  doi: 10.1126/science.aan8285

    45. [45]

      CHANG L, HU Y H. Breakthroughs in designing commercial-level mass-loading graphene electrodes for electrochemical double-layer capacitors[J]. Matter, 2019, 1(3): 596-620  doi: 10.1016/j.matt.2019.06.016

    46. [46]

      XU R, CHENG X B, YAN C, ZHANG X Q, XIAO Y, ZHAO C Z, HUANG J Q, ZHANG Q. Artificial interphases for highly stable lithium metal anode[J]. Matter, 2019, 1(2): 317-344  doi: 10.1016/j.matt.2019.05.016

    47. [47]

      WU H B, LOU X W. Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges[J]. Sci. Adv., 2017, 3(12): eaap9252  doi: 10.1126/sciadv.aap9252

    48. [48]

      FANG Y J, YU X Y, LOU X W. Nanostructured electrode materials for advanced sodium-ion batteries[J]. Matter, 2019, 1(1): 90-114  doi: 10.1016/j.matt.2019.05.007

    49. [49]

      HAO M M, BAI Y, ZEISKE S, REN L, LIU J X, YUAN Y B, ZARRABI N, CHENG N Y, GHASEMI M, CHEN P, LYU M Q, HE D X, YUN J H, DU Y, WANG Y, DING S S, ARMIN A, MEREDITH P, LIU G, CHENG H M, WANG L Z. Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1-xFAxPbI3 quantum dot solar cells with reduced phase segregation[J]. Nat. Energy, 2020, 5(1): 79-88  doi: 10.1038/s41560-019-0535-7

    50. [50]

      LIANG H F, MING F W, ALSHAREEF H N. Excellence in energy: Applications of plasma in energy conversion and storage materials[J]. Adv. Energy Mater., 2018, 8(29): 1870126  doi: 10.1002/aenm.201870126

    51. [51]

      HU H, LI Q, LI L Q, TENG X L, FENG Z X, ZHANG Y L, WU M B, QIU J S. Laser irradiation of electrode materials for energy storage and conversion[J]. Matter, 2020, 3(1): 95-126  doi: 10.1016/j.matt.2020.05.001

    52. [52]

      ROGELJ J, DEN ELZEN M, HÖHNE N, FRANSEN T, FEKETE H, WINKLER H, SCHAEFFER R, SHA F, RIAHI K, MEINSHAUSEN M. Paris agreement climate proposals need a boost to keep warming well below 2 ℃[J]. Nature, 2016, 534(7609): 631-639  doi: 10.1038/nature18307

    53. [53]

      HUANG L, ZAMAN S, TIAN X L, WANG Z T, FANG W S, XIA B Y. Advanced platinum-based oxygen reduction electrocatalysts for fuel cells[J]. Accouts Chem. Res., 2021, 54(2): 311-322  doi: 10.1021/acs.accounts.0c00488

    54. [54]

      BHARDWAJ S, BISWAS A, DAS M, DEY R S. Nanostructured Cu foam and its derivatives: Emerging materials for the heterogeneous conversion of CO2 to fuels[J]. Sustain. Energ. Fuels, 2021, 5(9): 2393-2414  doi: 10.1039/D1SE00085C

    55. [55]

      ASHOK J, PATI S, HONGMANOROM P, TIAN X Z, JUN M C, KAWI S. A review of recent catalyst advances in CO2 methanation processes[J]. Catal. Today, 2020, 356: 471-489  doi: 10.1016/j.cattod.2020.07.023

    56. [56]

      BHALOTHIA D, KRISHNIA L, YANG S S, YAN C, HSIUNG W H, WANG K W, CHEN T Y. Recent advancements and future prospects of noble metal-based heterogeneous nanocatalysts for oxygen reduction and hydrogen evolution reactions[J]. Appl. Sci. ‒Basel, 2020, 10(21): 7708  doi: 10.3390/app10217708

    57. [57]

      ZHANG H X, WANG P F, YAO C G, CHEN S P, CAI K D, SHI F N. Recent advances of ferro-/piezoelectric polarization effect for dendrite-free metal anodes[J]. Rare Met., 2023, 42(8): 2516-2544  doi: 10.1007/s12598-023-02319-8

    58. [58]

      BHALOTHIA D, HSIUNG W H, YANG S S, YAN C, CHEN P C, LIN T H, WU S C, CHEN P C, WANG K W, LIN M W, CHEN T Y. Submillisecond laser annealing induced surface and subsurface restructuring of Cu-Ni-Pd trimetallic nanocatalyst promotes thermal CO2 Reduction[J]. ACS Appl. Energy Mater., 2021, 4(12): 14043-14058  doi: 10.1021/acsaem.1c02823

    59. [59]

      DONG T J, LIU X Y, TANG Z F, YUAN H F, JIANG D, WANG Y J, LIU Z, ZHANG X L, HUANG S F, LIU H, ZHAO L L, ZHOU W J. Ru decorated TiOx nanoparticles via laser bombardment for photothermal co-catalytic CO2 hydrogenation to methane with high selectivity[J]. Appl. Catal. B‒Environ., 2023, 326: 122176  doi: 10.1016/j.apcatb.2022.122176

    60. [60]

      BIN C, YUAN H F, LI L, YU J Y, LIU X Y, YU W Q, WANG B, ZHAO L L, LIU X Y, SUN S H, LIU H, ZHOU W J. Enhancing electrochemical nitrogen fixation by mimicking π back-donation on laser-tuned Lewis acid sites in noble-metal-molybdenum carbide[J]. Appl. Catal. B‒Environ., 2023, 320: 121777  doi: 10.1016/j.apcatb.2022.121777

    61. [61]

      WANG Y J, CHEN Y K, ZHAO Y W, YU J Y, LIU Z, SHI Y J, LIU H, LI X, ZHOU W J. Laser-fabricated channeled Cu6Sn5/Sn as electrocatalyst and gas diffusion electrode for efficient CO2 electroreduction to formate[J]. Appl. Catal. B‒Environ., 2022, 307: 120991  doi: 10.1016/j.apcatb.2021.120991

    62. [62]

      SHI Y J, WANG Y J, YU J Y, CHEN Y K, FANG C Q, JIANG D, ZHANG Q H, GU L, YU X W, LI X, LIU H, ZHOU W J. Superscalar phase boundaries derived multiple active sites in SnO2/Cu6Sn5/CuO for tandem electroreduction of CO2 to formic acid[J]. Adv. Energy Mater., 2023, 13(13): 2203506  doi: 10.1002/aenm.202203506

    63. [63]

      ZHU M N, JIANG H Q, ZHANG B W, GAO M R, SUI P F, FENG R F, SHANKAR K, BERGENS S H, CHENG G J, LUO J L. Nanosecond laser confined bismuth moiety with tunable structures on graphene for carbon dioxide reduction[J]. ACS Nano, 2023, 17(9): 8705-8716  doi: 10.1021/acsnano.3c01897

    64. [64]

      JOYA K S, JOYA Y F, OCAKOGLU K, VAN DE KROL R. Water-splitting catalysis and solar fuel devices: Artificial leaves on the move[J]. Angew Chem. ‒Int Edit, 2013, 52(40): 10426-10437  doi: 10.1002/anie.201300136

    65. [65]

      JIANG Q Q, XU L, CHEN N, ZHANG H, DAI L M, WANG S Y. Facile synthesis of black phosphorus: An efficient electrocatalyst for the oxygen evolving reaction[J]. Angew Chem. ‒Int Edit, 2016, 55(44): 13849-13853  doi: 10.1002/anie.201607393

    66. [66]

      JIAO Y, ZHENG Y, JARONIEC M, QIAO S Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions[J]. Chem. Soc. Rev., 2015, 44(8): 2060-2086  doi: 10.1039/C4CS00470A

    67. [67]

      VOIRY D, YANG J, CHHOWALLA M. Recent strategies for improving the catalytic activity of 2D TMD nanosheets toward the hydrogen evolution reaction[J]. Adv. Mater., 2016, 28(29): 6197-6206  doi: 10.1002/adma.201505597

    68. [68]

      NAYAK P, JIANG Q, KURRA N, WANG X, BUTTNER U, ALSHAREEF H N. Monolithic laser scribed graphene scaffolds with atomic layer deposited platinum for the hydrogen evolution reaction[J]. J. Mater. Chem. A, 2017, 5(38): 20422-20427  doi: 10.1039/C7TA06236B

    69. [69]

      YUAN H F, JIANG D, LI Z M, LIU X Y, TANG Z F, ZHANG X Z, ZHAO L L, HUANG M, LIU H, SONG K P, ZHOU W J. Laser synthesis of PtMo single-atom alloy electrode for ultralow voltage hydrogen generation[J]. Adv. Mater., 2024, 36(5): 2305375  doi: 10.1002/adma.202305375

    70. [70]

      YUAN H F, ZHAO L, CHANG B, CHEN Y K, DONG T J, HE J T, JIANG D, YU W Q, LIU H, ZHOU W J. Laser fabrication of Pt anchored Mo2C micropillars as integrated gas diffusion and catalytic electrode for proton exchange membrane water electrolyzer[J]. Appl. Catal. B‒Environ., 2022, 314: 121455  doi: 10.1016/j.apcatb.2022.121455

    71. [71]

      YUAN H I, LI J W, TANG Z F, WANG Y J, WU T, HUANG M, ZHAO L L, ZHAO Z H, LIU H, XU C X, LIU X Y, ZHOU W J. Enhanced interfacial stability of Pt/TiO2/Ti via Pt-O bonding for efficient acidic electrolyzer[J]. Chem. Eng. J., 2024, 492: 152339  doi: 10.1016/j.cej.2024.152339

    72. [72]

      WANG N, BO X J, ZHOU M. Laser conversion of biomass into porous carbon composite under ambient condition for pH-Universal electrochemical hydrogen evolution reaction[J]. J. Colloid Interface Sci., 2021, 604: 885-893  doi: 10.1016/j.jcis.2021.07.057

    73. [73]

      ZHAO L L, CHANG B, DONG T J, YUAN H F, LI Y, TANG Z F, LIU Z, LIU H, ZHANG X L, ZHOU W J. Laser synthesis of amorphous CoSx nanospheres for efficient hydrogen evolution and nitrogen reduction reactions[J]. J. Mater. Chem. A, 2022, 10(37): 20071-20079  doi: 10.1039/D2TA01982E

    74. [74]

      LI Y J, LIAO C A, TANG K W, ZHANG N, QI W H, XIE H P, HE J, YIN K, GAO Y L, WANG C D. Cobalt hydroxide-black phosphorus nanosheets: A superior electrocatalyst for electrochemical oxygen evolution[J]. Electrochim. Acta, 2019, 297: 40-45  doi: 10.1016/j.electacta.2018.11.171

    75. [75]

      HU S, TIAN M, RIBEIRO E L, DUSCHER G, MUKHERJEE D. Tandem laser ablation synthesis in solution-galvanic replacement reaction (LASiS-GRR) for the production of PtCo nanoalloys as oxygen reduction electrocatalysts[J]. J. Power Sources, 2016, 306: 413-423  doi: 10.1016/j.jpowsour.2015.11.078

    76. [76]

      HU S, GOENAGA G, MELTON C, ZAWODZINSKI T A, MUKHERJEE D. PtCo/CoOx nanocomposites: Bifunctional electrocatalysts for oxygen reduction and evolution reactions synthesized via tandem laser ablation synthesis in solution-galvanic replacement reactions[J]. Appl. Catal. B‒Environ., 2016, 182: 286-96  doi: 10.1016/j.apcatb.2015.09.035

    77. [77]

      WU H F, YIN K, QI W H, ZHOU X F, HE J T, LI J M, LIU Y Y, HE J, GONG S, LI Y J. Rapid fabrication of Ni/NiO@CoFe layered double hydroxide hierarchical nanostructures by femtosecond laser ablation and electrodeposition for efficient overall water splitting[J]. ChemSusChem, 2019, 12(12): 2773-2779  doi: 10.1002/cssc.201900479

    78. [78]

      YANG S, YIN K, WU J R, WU Z P, CHU D K, HE J, DUAN J A. Ultrafast nano-structuring of superwetting Ti foam with robust antifouling and stability towards efficient oil-in-water emulsion separation[J]. Nanoscale, 2019, 11(38): 17607-17614  doi: 10.1039/C9NR04381K

    79. [79]

      YIN K, DU H F, DONG X R, WANG C, DUAN J A, HE J. A simple way to achieve bioinspired hybrid wettability surface with micro/nanopatterns for efficient fog collection[J]. Nanoscale, 2017, 9(38): 14620-14626  doi: 10.1039/C7NR05683D

    80. [80]

      CAI M Y, PAN R, LIU W J, LUO X, CHEN C H, ZHANG H J, ZHONG M L. Laser-assisted doping and architecture engineering of Fe3O4 nanoparticles for highly enhanced oxygen evolution reaction[J]. ChemSusChem, 2019, 12(15): 3562-3570  doi: 10.1002/cssc.201901020

    81. [81]

      WANG N, BO X J, ZHOU M. Single-step and room-temperature synthesis of laser-induced Pt/VC nanocomposites as effective bifunctional electrocatalysts for hydrogen evolution and oxygen evolution reactions[J]. ACS Appl. Mater. Interfaces, 2022, 14(20): 23332-23341  doi: 10.1021/acsami.2c00747

    82. [82]

      YU M Q, WAAG F, CHAN C K, WEIDENTHALER C, BARCIKOWSKI S, TÜYSÜZ H. Laser fragmentation-induced defect-rich cobalt oxide nanoparticles for electrochemical oxygen evolution reaction[J]. ChemSusChem, 2020, 13(3): 520-528  doi: 10.1002/cssc.201903186

    83. [83]

      YU T, HOU Y H, SHI P, YANG Y, CHEN M Y, ZHOU W D, JIANG Z Z, LUO X F, ZHOU H, YUAN C L. Boosting the OER performance of nitrogen-doped Ni nanoclusters confined in an amorphous carbon matrix[J]. Inorg. Chem., 2022, 61(4): 2360-2367  doi: 10.1021/acs.inorgchem.1c03780

    84. [84]

      CHEN Y K, WANG Y J, YU J Y, XIONG G W, NIU H S, LI Y, SUN D H, ZHANG X L, LIU H, ZHOU W J. Underfocus laser induced Ni nanoparticles embedded metallic MoN microrods as patterned electrode for efficient overall water splitting[J]. Adv. Sci., 2022, 9(10): 2105869  doi: 10.1002/advs.202105869

    85. [85]

      DE LUNA P, HAHN C, HIGGINS D, JAFFER S A, JARAMILLO T F, SARGENT E H. What would it take for renewably powered electrosynthesis to displace petrochemical processes?[J]. Science, 2019, 364(6438): eaav3506  doi: 10.1126/science.aav3506

    86. [86]

      DEBE M K. Electrocatalyst approaches and challenges for automotive fuel cells[J]. Nature, 2012, 486(7401): 43-51  doi: 10.1038/nature11115

    87. [87]

      SEH Z W, KIBSGAARD J, DICKENS C F, CHORKENDORFF I, NØRSKOV J K, JARAMILLO T F. Combining theory and experiment in electrocatalysis: Insights into materials design[J]. Science, 2017, 355(6321): eaad4998  doi: 10.1126/science.aad4998

    88. [88]

      SHINDE S S, JUNG J Y, WAGH N K, LEE C H, KIM D H, KIM S H, LEE S U, LEE J H. Ampere-hour-scale zinc-air pouch cells[J]. Nat. Energy, 2021, 6(6): 592-604  doi: 10.1038/s41560-021-00807-8

    89. [89]

      ZAMAN S, HUANG L, DOUKA A I, YANG H, YOU B, XIA B Y. Oxygen reduction electrocatalysts toward practical fuel cells: Progress and perspectives[J]. Angew Chem. ‒Int Edit, 2021, 60(33): 17832-17852  doi: 10.1002/anie.202016977

    90. [90]

      BRANDIELE R, GUADAGNINI A, GIRARDI L, DRAŽIĆ G, DALCONI M C, RIZZI G A, AMENDOLA V, DURANTE C. Climbing the oxygen reduction reaction volcano plot with laser ablation synthesis of PtxY nanoalloys[J]. Catal. Sci. Technol., 2020, 10(14): 4503-4508  doi: 10.1039/D0CY00983K

    91. [91]

      SHA Y, MOISSINAC F, ZHU M H, HUANG K, GUO H Y, WANG L T, LIU Y X, LI L, THOMAS A, LIU Z. Laser synthesis of nonprecious metal-based single-atom catalysts for oxygen reduction reaction[J]. ACS Appl. Mater. Interfaces, 2023, 15(44): 51004-51012  doi: 10.1021/acsami.3c09556

    92. [92]

      CHINNADURAI D, LEE S J, YU Y, NAM S Y, CHOI M Y. Cation modulation in dual-phase nickel sulfide nanospheres by pulsed laser irradiation for overall water splitting and methanol oxidation reaction[J]. Fuel, 2022, 320: 123915  doi: 10.1016/j.fuel.2022.123915

    93. [93]

      NAIK S S, THEERTHAGIRI J, MIN A, MOON C J, LEE S J, CHOI M Y. Selective furfural conversion via parallel hydrogenation-oxidation on MOF-derived CuO/RuO2/C electrocatalysts via pulsed laser[J]. Appl. Catal. B‒Environ., 2023, 339: 123164  doi: 10.1016/j.apcatb.2023.123164

    94. [94]

      YIN Y H, SUN X C, ZHOU M, ZHAO X R, QIN J, QIAO S Z, DU X W, YANG J. Laser-induced pyridinic-nitrogen-rich defective carbon nanotubes for efficient oxygen electrocatalysis[J]. ChemCatChem, 2019, 11(24): 6131-6138  doi: 10.1002/cctc.201901875

    95. [95]

      ZHONG W X, ZHAO X R, QIN J Y, YANG J. An active hybrid electrocatalyst with synergized pyridinic nitrogen-cobalt and oxygen vacancies for bifunctional oxygen reduction and evolution[J]. Chin. J. Chem., 2021, 39(3): 655-660  doi: 10.1002/cjoc.202000445

    96. [96]

      VELISCEK Z, PERSE L S, DOMINKO R, KELDER E, GABERSCEK M. Preparation, characterisation and optimisation of lithium battery anodes consisting of silicon synthesised using laser assisted chemical vapour pyrolysis[J]. J. Power Sources, 2015, 273: 380-388  doi: 10.1016/j.jpowsour.2014.09.111

    97. [97]

      TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367  doi: 10.1038/35104644

    98. [98]

      KANG K, MENG Y S, BRÉGER J, GREY C P, CEDER G. Electrodes with high power and high capacity for rechargeable lithium batteries[J]. Science, 2006, 311(5763): 977-980  doi: 10.1126/science.1122152

    99. [99]

      SCROSATI B, GARCHE J. Lithium batteries: Status, prospects and future[J]. J. Power Sources, 2010, 195(9): 2419-2430  doi: 10.1016/j.jpowsour.2009.11.048

    100. [100]

      THACKERAY M M, WOLVERTON C, ISAACS E D. Electrical energy storage for transportation—Approaching the limits of, and going beyond, lithium-ion batteries[J]. Energy Environ. Sci., 2012, 5(7): 7854-7863  doi: 10.1039/c2ee21892e

    101. [101]

      LEE D, PATWA R, HERFURTH H, MAZUMDER J. Computational and experimental studies of laser cutting of the current collectors for lithium-ion batteries[J]. J. Power Sources, 2012, 210: 327-338  doi: 10.1016/j.jpowsour.2012.03.030

    102. [102]

      NITTA N, WU F, LEE J T, YUSHIN G. Li-ion battery materials: Present and future[J]. Mater. Today, 2015, 18(5): 252-264  doi: 10.1016/j.mattod.2014.10.040

    103. [103]

      SUK J, KIM D Y, KIM D W, KANG Y. Electrodeposited 3D porous silicon/copper films with excellent stability and high rate performance for lithium-ion batteries[J]. J. Mater. Chem. A, 2014, 2(8): 2478-2481  doi: 10.1039/c3ta14645f

    104. [104]

      KRIEGLER J, HILLE L, STOCK S, KRAFT L, HAGEMEISTER J, HABEDANK J B, JOSSEN A, ZAEH M F. Enhanced performance and lifetime of lithium-ion batteries by laser structuring of graphite anodes[J]. Appl. Energy, 2021, 303: 117693  doi: 10.1016/j.apenergy.2021.117693

    105. [105]

      BERHE M G, OH H G, PARK S K, LEE D. Laser cutting of silicon anode for lithium-ion batteries[J]. J. Mater. Res. Technol., 2022, 16: 322-334  doi: 10.1016/j.jmrt.2021.11.135

    106. [106]

      LI W, WU S S, ZHANG H R, ZHANG X J, ZHUANG J L, HU C F, LIU Y L, LEI B F, MA L, WANG X J. Enhanced biological photosynthetic efficiency using light-harvesting engineering with dual-emissive carbon dots[J]. Adv. Funct. Mater., 2018, 28(44): 1804004  doi: 10.1002/adfm.201804004

    107. [107]

      WANG Y F, HUANG C X, HE Q, GUO F J, WANG M S, SONG L Y, ZHU Y T. Heterostructure induced dispersive shear bands in heterostructured Cu[J]. Scr. Mater., 2019, 170: 76-80  doi: 10.1016/j.scriptamat.2019.05.036

    108. [108]

      HE B Y, PENG H W, CHEN Y, ZHAO Q. High performance polyamide nanofiltration membranes enabled by surface modification of imidazolium ionic liquid[J]. J. Membr. Sci., 2020, 608: 118202  doi: 10.1016/j.memsci.2020.118202

    109. [109]

      WANG L, YUAN Y F, ZHANG X T, CHEN Q, GUO S Y. Co3O4 hollow nanospheres/carbon-assembled mesoporous polyhedron with internal bubbles encapsulating TiO2 nanosphere for high-performance lithium ion batteries[J]. Nanotechnology, 2019, 30(35): 355401  doi: 10.1088/1361-6528/ab2002

    110. [110]

      ZHONG W W, HUANG X H, LIN Y, CAO Y Q, WANG Z P. Compact Co3O4/Co in-situ nanocomposites prepared by pulsed laser sintering as anode materials for lithium-ion batteries[J]. J. Energy Chem., 2021, 58: 386-390  doi: 10.1016/j.jechem.2020.10.013

    111. [111]

      CHEN T, MA L B, CHENG B R, CHEN R P, HU Y, ZHU G Y, WANG Y R, LIANG J, TIE Z X, LIU J, JIN Z. Metallic and polar Co9S8 inlaid carbon hollow nanopolyhedra as efficient polysulfide mediator for lithium-sulfur batteries[J]. Nano Energy, 2017, 38: 239-248  doi: 10.1016/j.nanoen.2017.05.064

    112. [112]

      GOODENOUGH J B. Evolution of strategies for modern rechargeable batteries[J]. Accouts Chem. Res., 2013, 46(5): 1053-1061  doi: 10.1021/ar2002705

    113. [113]

      EFTEKHARI A, KIM D W. Cathode materials for lithium-sulfur batteries: A practical perspective[J]. J. Mater. Chem. A, 2017, 5(34): 17734-17776  doi: 10.1039/C7TA00799J

    114. [114]

      LI F, LIU Q H, HU J W, FENG Y Z, HE P B, MA J M. Recent advances in cathode materials for rechargeable lithium-sulfur batteries[J]. Nanoscale, 2019, 11(33): 15418-15439  doi: 10.1039/C9NR04415A

    115. [115]

      KAMISAN A I, KUDIN T I T, KAMISAN A S, OMAR A F C, TAIB M F M, HASSAN O H, ALI A M M, YAHYA M Z A. Recent advances on graphene-based materials as cathode materials in lithium-sulfur batteries[J]. Int. J. Hydrog. Energy, 2022, 47(13): 8630-8657  doi: 10.1016/j.ijhydene.2021.12.166

    116. [116]

      KOTHURU A, COHEN A, DAFFAN G, PATOLSKY F. Direct laser-printing of molecularly-dispersed strongly-anchored sulfur-graphene layers as high-performance cathodes for polysulfide shuttle effect-inhibited lithium-sulfur batteries[J]. ChemRxiv., 2024. https://doi.org/10.26434/chemrxiv-2024-qdtpf  doi: 10.26434/chemrxiv-2024-qdtpf

    117. [117]

      WANG Y, HUANG J Y, LU J G, LU B, YE Z Z. Fabricating efficient polysulfide barrier via ultrathin tantalum pentoxide grown on separator for lithium-sulfur batteries[J]. J. Electroanal. Chem., 2019, 854: 113539  doi: 10.1016/j.jelechem.2019.113539

    118. [118]

      LEE J, SONG H, MIN K A, GUO Q Y, KIM D, ZHENG Z J, HAN B, JUNG Y, LEE L Y S. Laser-ablated red phosphorus on carbon nanotube film for accelerating polysulfide conversion toward high-performance and flexible lithium-sulfur batteries[J]. Small Methods, 2021, 5(7): 2100215  doi: 10.1002/smtd.202100215

    119. [119]

      WANG W, TAD M O, SHAO Z P. Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment[J]. Chem. Soc. Rev., 2015, 44(15): 5371-5408  doi: 10.1039/C5CS00113G

    120. [120]

      GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: A perspective[J]. J. Am. Chem. Soc., 2013, 135(4): 1167-1176  doi: 10.1021/ja3091438

    121. [121]

      POIZOT P, LARUELLE S, GRUGEON S, DUPONT L, TARASCON J M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J]. Nature, 2000, 407(6803): 496-499  doi: 10.1038/35035045

    122. [122]

      ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657  doi: 10.1038/451652a

    123. [123]

      LIU J, BAO Z N, CUI Y, DUFEK E J, GOODENOUGH J B, KHALIFAH P, LI Q Y, LIAW B Y, LIU P, MANTHIRAM A, MENG Y S, SUBRAMANIAN V R, TONEY M F, VISWANATHAN V V, WHITTINGHAM M S, XIAO J, XU W, YANG J H, YANG X Q, ZHANG J G. Pathways for practical high-energy long-cycling lithium metal batteries[J]. Nat. Energy, 2019, 4(3): 180-186  doi: 10.1038/s41560-019-0338-x

    124. [124]

      MATSUDA S, YASUKAWA E, KAMEDA T, KIMURA S, YAMAGUCHI S, KUBO Y, UOSAKI K. Carbon-black-based self-standing porous electrode for 500 Wh/kg rechargeable lithium-oxygen batteries[J]. Cell Rep. Phys. Sci., 2021, 2(7): 100506  doi: 10.1016/j.xcrp.2021.100506

    125. [125]

      KWAK W J, PARK J, NGUYEN T T, KIM H, BYON H R, JANG M, SUN Y K. A dendrite- and oxygen-proof protective layer for lithium metal in lithium-oxygen batteries[J]. J. Mater. Chem. A, 2019, 7(8): 3857-3862  doi: 10.1039/C8TA11941D

    126. [126]

      LI C L, HUANG G, YU Y, XIONG Q, YAN J M, ZHANG X B. Three birds with one stone: An integrated cathode-electrolyte structure for high-performance solid-state lithium-oxygen batteries[J]. Small, 2022, 18(17): 2107833  doi: 10.1002/smll.202107833

    127. [127]

      LIU T, XU J J, LIU Q C, CHANG Z W, YIN Y B, YANG X Y, ZHANG X B. Ultrathin, lightweight, and wearable Li-O2 battery with high robustness and gravimetric/volumetric energy density[J]. Small, 2017, 13(6): 1602952  doi: 10.1002/smll.201602952

    128. [128]

      REN M Q, ZHANG J B, ZHANG C H, STANFORD M G, CHYAN Y, YAO Y, TOUR J M. Quasi-solid-state Li-O2 batteries with laser-induced graphene cathode catalysts[J]. ACS Appl. Energy Mater., 2020, 3(2): 1702-1709  doi: 10.1021/acsaem.9b02182

    129. [129]

      REN M Q, ZHANG J B, FAN M M, AJAYAN P M, TOUR J M. Li-breathing air batteries catalyzed by MnNiFe/laser-induced graphene catalysts[J]. Adv. Mater. Interfaces, 2019, 6(19): 1901035  doi: 10.1002/admi.201901035

    130. [130]

      BEIDAGHI M, GOGOTSI Y. Capacitive energy storage in micro-scale devices: Recent advances in design and fabrication of micro-supercapacitors[J]. Energy Environ. Sci., 2014, 7(3): 867-884  doi: 10.1039/c3ee43526a

    131. [131]

      WANG Z L. Toward self-powered sensor networks[J]. Nano Today, 2010, 5(6): 512-514  doi: 10.1016/j.nantod.2010.09.001

    132. [132]

      BAE J, SONG M K, PARK Y J, KIM J M, LIU M, WANG Z L. Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage[J]. Angew Chem. ‒Int Edit, 2011, 50(7): 1683-1687  doi: 10.1002/anie.201006062

    133. [133]

      YU D S, GOH K L, WANG H, WEI L, JIANG W C, ZHANG Q, DAI L M, CHEN Y. Author correction: Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage[J]. Nat. Nanotechnol., 2020, 15(9): 811  doi: 10.1038/s41565-020-0718-1

    134. [134]

      CHMIOLA J, LARGEOT C, TABERNA P L, SIMON P, GOGOTSI Y. Monolithic carbide-derived carbon films for micro-supercapacitors[J]. Science, 2010, 328(5977): 480-483  doi: 10.1126/science.1184126

    135. [135]

      WU Z S, ZHENG Y J, ZHENG S H, WANG S, SUN C L, PARVEZ K, IKEDA T, BAO X H, M LLEN K, FENG X L. Stacked-layer heterostructure films of 2D thiophene nanosheets and graphene for high-rate all-solid-state pseudocapacitors with enhanced volumetric capacitance[J]. Adv. Mater., 2017, 29(3): 1602960  doi: 10.1002/adma.201602960

    136. [136]

      FIC K, PLATEK A, PIWEK J, FRACKOWIAK E. Sustainable materials for electrochemical capacitors[J]. Mater. Today, 2018, 21(4): 437-454  doi: 10.1016/j.mattod.2018.03.005

    137. [137]

      PECH D, BRUNET M, DUROU H, HUANG P, MOCHALIN V, GOGOTSI Y, TABERNA P L, SIMON P. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon[J]. Nat. Nanotechnol., 2010, 5(9): 651-654  doi: 10.1038/nnano.2010.162

    138. [138]

      LIN J, ZHANG C G, YAN Z, ZHU Y, PENG Z W, HAUGE R H, NATELSON D, TOUR J M. 3-dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance[J]. Nano Lett., 2013, 13(1): 72-78  doi: 10.1021/nl3034976

    139. [139]

      HEON M, LOFLAND S, APPLEGATE J, NOLTE R, CORTES E, HETTINGER J D, TABERNA P L, SIMON P, HUANG P, BRUNET M, GOGOTSI Y. Continuous carbide-derived carbon films with high volumetric capacitance[J]. Energy Environ. Sci., 2011, 4(1): 135-138  doi: 10.1039/C0EE00404A

    140. [140]

      BEIDAGHI M, WANG C. Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance[J]. Adv. Funct. Mater., 2012, 22(21): 4501-4510  doi: 10.1002/adfm.201201292

    141. [141]

      HSIA B, KIM M S, CARRARO C, MABOUDIAN R. Cycling characteristics of high energy density, electrochemically activated porous-carbon supercapacitor electrodes in aqueous electrolytes[J]. J. Mater. Chem. A, 2013, 1(35): 10518-10523  doi: 10.1039/c3ta11670k

    142. [142]

      EL-KADY M F, STRONG V, DUBIN S, KANER R B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors[J]. Science, 2012, 335(6074): 1326-1330  doi: 10.1126/science.1216744

    143. [143]

      GAO W, SINGH N, SONG L, LIU Z, REDDY A L M, CI L J, VAJTAI R, ZHANG Q, WEI B Q, AJAYAN P M. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films[J]. Nat. Nanotechnol., 2011, 6(8): 496-500  doi: 10.1038/nnano.2011.110

    144. [144]

      MARCANO D C, KOSYNKIN D V, BERLIN J M, SINITSKII A, SUN Z Z, SLESAREV A S, ALEMANY L B, LU W, TOUR J M. Correction to improved synthesis of graphene oxide[J]. ACS Nano, 2018, 12(2): 2078  doi: 10.1021/acsnano.8b00128

    145. [145]

      DIMIEV A, KOSYNKIN D V, ALEMANY L B, CHAGUINE P, TOUR J M. Pristine graphite oxide[J]. J. Am. Chem. Soc., 2012, 134(5): 2815-2822  doi: 10.1021/ja211531y

    146. [146]

      EL-KADY M F, KANER R B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage[J]. Nat. Commun., 2013, 4(1): 1475  doi: 10.1038/ncomms2446

    147. [147]

      GUO H, YAN J F, JIANG L, DENG S F, LIN X Z, QU L T. Femtosecond laser bessel beam fabrication of a supercapacitor with a nanoscale electrode gap for high specific volumetric capacitance[J]. ACS Appl. Mater. Interfaces, 2022, 14(34): 39220-39229  doi: 10.1021/acsami.2c10037

    148. [148]

      GUO H, QIAO M, YAN J F, JIANG L, YU J C, LI J Q, DENG S F, QU L T. Fabrication of hybrid supercapacitor by MoCl5 precursor-assisted carbonization with ultrafast laser for improved capacitance performance[J]. Adv. Funct. Mater., 2023, 33(23): 2213514  doi: 10.1002/adfm.202213514

    149. [149]

      KHAN Y, OSTFELD A E, LOCHNER C M, PIERRE A, ARIAS A C. Monitoring of vital signs with flexible and wearable medical devices[J]. Adv. Mater., 2016, 28(22): 4373-4395  doi: 10.1002/adma.201504366

    150. [150]

      WU W, HAICK H. Materials and wearable devices for autonomous monitoring of physiological markers[J]. Adv. Mater., 2018, 30(41): 1705024  doi: 10.1002/adma.201705024

    151. [151]

      HUANG C B, WITOMSKA S, ALIPRANDI A, STOECKEL M A, BONINI M, CIESIELSKI A, SAMOR P. Molecule-graphene hybrid materials with tunable mechanoresponse: Highly sensitive pressure sensors for health monitoring[J]. Adv. Mater., 2019, 31(1): 1804600  doi: 10.1002/adma.201804600

    152. [152]

      JIANG Y, LIU Z Y, MATSUHISA N, QI D P, LEOW W R, YANG H, YU J C, CHEN G, LIU Y Q, WAN C J, LIU Z J, CHEN X D. Auxetic mechanical metamaterials to enhance sensitivity of stretchable strain sensors[J]. Adv. Mater., 2018, 30(12): 1706589  doi: 10.1002/adma.201706589

    153. [153]

      KANG S, CHO S, SHANKER R, LEE H, PARK J, UM D S, LEE Y, KO H. Transparent and conductive nanomembranes with orthogonal silver nanowire arrays for skin-attachable loudspeakers and microphones[J]. Science Advances, 2018, 4(8): eaas8772  doi: 10.1126/sciadv.aas8772

    154. [154]

      CHEN K, SHI L R, ZHANG Y F, LIU Z F. Scalable chemical-vapour-deposition growth of three-dimensional graphene materials towards energy-related applications[J]. Chem. Soc. Rev., 2018, 47(9): 3018-3036  doi: 10.1039/C7CS00852J

    155. [155]

      CHABOT V, HIGGINS D, YU A P, XIAO X C, CHEN Z W, ZHANG J J. A review of graphene and graphene oxide sponge: Material synthesis and applications to energy and the environment[J]. Energy Environ. Sci., 2014, 7(5): 1564-1596  doi: 10.1039/c3ee43385d

    156. [156]

      LIN J, PENG Z W, LIU Y Y, RUIZ-ZEPEDA F, YE R Q, SAMUEL E L G, YACAMAN M J, YAKOBSON B I, TOUR J M. Laser-induced porous graphene films from commercial polymers[J]. Nat. Commun., 2014, 5(1): 5714  doi: 10.1038/ncomms6714

    157. [157]

      CHEN X P, LUO F, YUAN M, XIE D L, SHEN L, ZHENG K, WANG Z P, LI X D, TAO L Q. A dual-functional graphene-based self-alarm health-monitoring E-skin[J]. Adv. Funct. Mater., 2019, 29(51): 1904706  doi: 10.1002/adfm.201904706

    158. [158]

      FENZL C, NAYAK P, HIRSCH T, WOLFBEIS O S, ALSHAREEF H N, BAEUMNER A J. Laser-scribed graphene electrodes for aptamer-based biosensing[J]. ACS Sens., 2017, 2(5): 616-620  doi: 10.1021/acssensors.7b00066

    159. [159]

      LEI Y J, ALSHAREEF A H, ZHAO W L, INAL S. Laser-scribed graphene electrodes derived from lignin for biochemical sensing[J]. ACS Appl. Nano. Mater., 2020, 3(2): 1166-1174  doi: 10.1021/acsanm.9b01795

    160. [160]

      XIN D, HAN J, SONG W, HAN W B, WANG M, LI Z M, ZHANG Y W, LI Y, LIU H, LIU X Y, SUN D H, ZHOU W J. Laser-processed lithium niobate wafer for pyroelectric sensor[J]. InfoMat., 2024, 6(10): e12557  doi: 10.1002/inf2.12557

    161. [161]

      WANG J J, SUN M M, PEI X Y, ZHENG L, MA C B, LIU J, CAO M Z, BAI J, ZHOU M. Flexible biofuel cell-in-a-tube (iezTube): An entirely self-contained biofuel cell for wearable green bio-energy harvesting[J]. Adv. Funct. Mater., 2022, 32(48): 2209697  doi: 10.1002/adfm.202209697

    162. [162]

      SUN M M, PEI X Y, XIN T, LIU J, MA C B, CAO M Z, ZHOU M. A flexible microfluidic chip-based universal fully integrated nanoelectronic system with point-of-care raw sweat, tears, or saliva glucose monitoring for potential noninvasive glucose management[J]. Anal. Chem., 2022, 94(3): 1890-1900  doi: 10.1021/acs.analchem.1c05174

    163. [163]

      PEI X Y, SUN M M, WANG J J, BAI J, BO X J, ZHOU M. A bifunctional fully integrated wearable tracker for epidermal sweat and wound exudate multiple biomarkers monitoring[J]. Small, 2022, 18(46): 2205061  doi: 10.1002/smll.202205061

    164. [164]

      DENG W, SUN M M, CAO M Z, MA C B, BO X J, BAI J, ZHOU M. A fully integrated wearable biomimetic microfluidic wound tracker for in situ dynamic monitoring of wound exudate oxygen[J]. ACS Nano, 2025, 19(16): 16163-16174  doi: 10.1021/acsnano.5c04304

  • 加载中
    1. [1]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    2. [2]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    3. [3]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    4. [4]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    5. [5]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    6. [6]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    7. [7]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    8. [8]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    9. [9]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    10. [10]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    11. [11]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    12. [12]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

    13. [13]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    14. [14]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    15. [15]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    16. [16]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    17. [17]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    18. [18]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    19. [19]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    20. [20]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046

Metrics
  • PDF Downloads(0)
  • Abstract views(48)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return