Citation: Ru SONG, Biao WANG, Chunling LU, Bingbing NIU, Dongchao QIU. Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397 shu

Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material

Figures(8)

  • Sr, Ni co-doped PrBaFe2O5+δ (PBF) was employed to prepare the PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ (PBSFN) cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs), and the performance of cathode was evaluated. X-ray diffraction (XRD) analysis revealed that the PBSFN cathode formed a cubic perovskite structure after being calcined at high temperatures. PBSFN cathode and La0.9Sr0.1Ga0.83Mg0.17O3-δ (LSGM) electrolyte exhibited good chemical compatibility after being co-calcined at 950 ℃. In an air atmosphere, the conductivity of the PBSFN cathode reached a maximum value of 681 S·cm-1 at 350 ℃. At 800 ℃, the polarization resistance of the PBSFN cathode on the LSGM electrolyte was 0.033 Ω·cm2 in an air atmosphere. The high-frequency resistance (R1) is only 6.4% more than that of low-frequency resistance (R2), indicating Sr, Ni doped significantly improves the efficiency of charge transfer. The polarization resistance (Rp) result is consistent with the oxygen vacancy formation energy of PBSFN by density function theory calculations. At 800 ℃, using H2 as the fuel, the maximum power density of the single cell reached 647 mW·cm-2. In particular, the output power of the single cell with the PBSFN cathode maintained good stability over 100 h.
  • 加载中
    1. [1]

      PENG J X, HUANG J, WU X L, XU Y W, CHEN H C, LI X. Solid oxide fuel cell (SOFC) performance evaluation, fault diagnosis and health control: A review[J]. J. Power Sources, 2021,505230058. doi: 10.1016/j.jpowsour.2021.230058

    2. [2]

      KIM H J, KIM K J, SEO H G, LIM D K, JEONG S, SEO J, KIM J, JUNG W. Ex-solved Ag nanocatalysts on a Sr-free parent scaffold authorize a highly efficient route of oxygen reduction[J]. Adv. Funct. Mater., 2020,302001326. doi: 10.1002/adfm.202001326

    3. [3]

      GHORBANI-MOGHADAM T, KOMPANY A, GOLMOHAMMAD M. Improving the cathodic performance of La0.7Sr1.3CoO4 by substituting Ni in Co sites for intermediate solid oxide fuel cells application[J]. J. Alloy. Compd., 2023,960170624. doi: 10.1016/j.jallcom.2023.170624

    4. [4]

      JIA X S, LU F, LIU K, HAN M K, SU J R, HE H, CAI B. Improved performance of IT-SOFC by negative thermal expansion Sm0.85Zn0.15 MnO3 addition in Ba0.5Sr0.5Fe0.8Cu0.1Ti0.1O3-δ cathode[J]. J. Phys. - Condens. Matter, 2022,34(18)184001. doi: 10.1088/1361-648X/ac4fe7

    5. [5]

      YU Y Z, SUN L P, ZHAO H, HUO L H. Preparation and electrochemical properties of LaBiMn2O6-Sm0.2Ce0.8O1.9 composite cathode for IT-SOFCs[J]. Chinese J. Inorg. Chem., 2019,35(4):589-597.

    6. [6]

      HUA B, LI M, SUN Y F, ZHANG Y Q, YAN N, LI J, ETSELL T, SARKAR P, LUO J L. Grafting doped manganite into nickel anode enables efficient and durable energy conversions in biogas solid oxide fuel cells[J]. Appl. Catal. B-Environ., 2017,200:174-181. doi: 10.1016/j.apcatb.2016.07.001

    7. [7]

      LEE D, KIM D, SON S J, KWON Y I, LEE Y, AHN J H, JOO J H. Simultaneous A- and B-site substituted double perovskite (AA'B2O5+δ) as a new high-performance and redox-stable anode material for solid oxide fuel cells[J]. J. Power Sources, 2019,434226743. doi: 10.1016/j.jpowsour.2019.226743

    8. [8]

      CHEN D J, WANG F C, SHI H G, RAN R, SHAO Z P. Systematic evaluation of Co-free LnBaFe2O5+δ (Ln=lanthanides or Y) oxides towards the application as cathodes for intermediate-temperature solid oxide fuel cells[J]. Electrochim. Acta, 2012,78:466-474. doi: 10.1016/j.electacta.2012.06.073

    9. [9]

      DING H P, ZHOU D S, LIU S, WU W, YANG Y T, YANG Y C, TAO Z T. Electricity generation in dry methane by a durable ceramic fuel cell with high-performing and coking-resistant layered perovskite anode[J]. Appl. Energy, 2019,233/234:37-43. doi: 10.1016/j.apenergy.2018.10.013

    10. [10]

      DING H P, TAO Z T, LIU S, ZHANG J J. A high-performing sulfur-tolerant and redox-stable layered perovskite anode for direct hydrocarbon solid oxide fuel cells[J]. Sci Rep, 2015,5(1)18129. doi: 10.1038/srep18129

    11. [11]

      BILAL HANIF M, MOTOLA M, QAYYUM S, RAUF S, KHALID A, LI C J, LI C X. Recent advancements, doping strategies and the future perspective of perovskite-based solid oxide fuel cells for energy conversion[J]. Chem. Eng. J., 2022,428132603. doi: 10.1016/j.cej.2021.132603

    12. [12]

      CHOI S. Electrochemical properties of Sr-doped layered perovskite as a promising anode material for direct hydrocarbon SOFCs[J]. J. Korean Ceram. Soc., 2020,57(4):409-415. doi: 10.1007/s43207-020-00045-w

    13. [13]

      SUBARDI A, CHEN C C, CHENG M H, CHANG W K, FU Y P. Electrical, thermal and electrochemical properties of SmBa1-xSrxCo2O5+δ cathode materials for intermediate-temperature solid oxide fuel cells[J]. Electrochim. Acta, 2016,204:118-127. doi: 10.1016/j.electacta.2016.04.069

    14. [14]

      HASHIMOTO S I, KAMMER K, LARSEN P H, POULSEN F W, MOGENSEN M. A study of Pr0.7Sr0.3Fe1-xNixO3-δ as a cathode material for SOFCs with intermediate operating temperature[J]. Solid State Ion., 2005,176(11):1013-1020.

    15. [15]

      GIULIANO A, NICOLLET C, FOURCADE S, MAUVY F, CARPANESE M P, GRENIER J C. Influence of the electrode/electrolyte interface structure on the performance of Pr0.8Sr0.2Fe0.7Ni0.3O3-δ as solid oxide fuel cell cathode[J]. Electrochim. Acta, 2017,236:328-336. doi: 10.1016/j.electacta.2017.03.179

    16. [16]

      MENG Y, ZHANG Q, CHEN Z J, CHEN X, ZHOU J, ZHU X F, WANG N, ZHOU D F. Novel cobalt and strontium-free perovskite Pr0.5Ba0.5Fe1-xNixO3-δ (x=0 and 0.2) as cathode for intermediate-temperature solid oxide fuel cells[J]. Ionics, 2021,27(9):3951-3965. doi: 10.1007/s11581-021-04148-0

    17. [17]

      SHAUR A, REHMAN S U, KIM H S, SONG R H, LIM T H, HONG J E, PARK S J, LEE S B. Hybrid electrochemical deposition route for the facile nanofabrication of a Cr-poisoning-tolerant La(Ni, Fe)O3-δ cathode for solid oxide fuel cells[J]. ACS Appl. Mater. Interfaces, 2020,12(5):5730-5738. doi: 10.1021/acsami.9b17807

    18. [18]

      LUO T, LIU X J, MENG X, WU H, WANG S R, ZHAN Z L. In situ formation of LaNi0.6Fe0.4O3-δ-carbon nanotube hybrids as anodes for direct-methane solid oxide fuel cells[J]. J. Power Sources, 2015,299:472-479. doi: 10.1016/j.jpowsour.2015.09.035

    19. [19]

      TENG Y K, LI J X, WANG P C, YANG Y F, ZHAI Y J, JIN F J. Performance of nickel-doped praseodymium ferrite as symmetric solid oxide fuel cell electrode[J]. Journal. Chinese Ceramic Society, 2023,51(4):1007-1014.

    20. [20]

      ABUBAKER O A, SINGH K, THANGADURAI V. Investigating the effect of Cu-doping on the electrochemical properties of perovskite-type Ba0.5Sr0.5Fe1-xCuxO3-δ (0 ≤ x ≤ 0.20) cathodes[J]. J. Power Sources, 2020,451227777.

    21. [21]

      SUN L P, LI H H, LI Q, HUO L H, ZHAO H, BASSAT J M, ROUGIER A, FOURCADE S, GRENIER J C. Evaluation of La2-xNiMnO6-δ as cathode for intermediate temperature solid oxide fuel cells[J]. J. Power Sources, 2018,392:8-14. doi: 10.1016/j.jpowsour.2018.04.083

    22. [22]

      ZHANG W W, ZHANG L F, GUAN K, ZHANG X, MENG J L, WANG H C, LIU X J, MENG J. Effective promotion of oxygen reduction activity by rare earth doping in simple perovskite cathodes for intermediate-temperature solid oxide fuel cells[J]. J. Power Sources, 2020,446227360.

    23. [23]

      YAO C G, YANG J X, CHEN S G, MENG J, CAI K D, ZHANG Q G. Copper doped SrFe0.9-xCuxW0.1O3-δ (x=0-0.3) perovskites as cathode materials for IT-SOFCs[J]. J. Alloy. Compd., 2021,868159127.

    24. [24]

      JIANG S S, SUNARSO J, ZHOU W, SHEN J, RAN R, SHAO Z P. Cobalt-free SrNbxFe1-xO3-δ (x=0.05, 0.1 and 0.2) perovskite cathodes for intermediate temperature solid oxide fuel cells[J]. J. Power Sources, 2015,298:209-216.

    25. [25]

      CUI J J, WANG J K, ZHANG X W, LI G J, WU K, CHENG Y H, ZHOU J. Low thermal expansion material Bi0.5Ba0.5FeO3-δ in application for proton-conducting ceramic fuel cells cathode[J]. Inter. J. Hydrogen Energy, 2019,44(38):21127-21135.

    26. [26]

      SIM R, MANTHIRAM A. Factors influencing gas evolution from high-nickel layered oxide cathodes in lithium-based batteries[J]. Adv. Energy Mater., 2024,14(8)2303985.

    27. [27]

      HE W, WU X L, DONG F F, NI M. A novel layered perovskite electrode for symmetrical solid oxide fuel cells: PrBa(Fe0.8Sc0.2)2O5+δ[J]. J. Power Sources, 2017,363:16-19.

    28. [28]

      XIE Z X, FENG X X, ZHANG T F, WANG Z M, LI Y M, CHEN T. Improved thermal expansion and electrochemical performance of La1-xSrxFe0.7Ni0.3O3-δ cathodes for intermediate-temperature SOFCs[J]. Solid State Sci., 2020,108106356.

    29. [29]

      WANG L L, GU Y Y, DAI H L, YIN Y R, BI L. Sr and Fe co-doped Ba2In2O5 as a new proton-conductor-derived cathode for proton-conducting solid oxide fuel cells[J]. J. Eur. Ceram. Soc., 2023,43(10):4573-4579.

    30. [30]

      WANG Y, JIN F J, HAO X H, NIU B B, LYU P, HE T M. B-site-ordered Co-based double perovskites Sr2Co1-xNbxFeO5+δ as active and stable cathodes for intermediate-temperature solid oxide fuel cells[J]. J. Alloy. Compd., 2020,829154470.

    31. [31]

      CHEN H J, LIM C, ZHOU M Z, HE Z Y, SUN X, LI X B, YE Y J, TAN T, ZHANG H, YANG C H, HAN J W, CHEN Y. Activating lattice oxygen in perovskite oxide by B-site cation doping for modulated stability and activity at elevated temperatures[J]. Adv. Sci., 2021,8(22)2102713.

    32. [32]

      KIM H, LIM C, KWON O, CHOI S, HAN J W, KIM G. Utilization of an isovalent doping strategy in cobalt-free ferrites for highly active and stable solid oxide fuel cell cathodes[J]. ACS Appl. Energ. Mater., 2022,5(3):3417-3425.

    33. [33]

      LU C L, NIU B B, YI W D, JI Y, XU B M. Efficient symmetrical electrodes of PrBaFe2-xCoxO5+δ (x=0, 0.2, 0.4) for solid oxide fuel cells and solid oxide electrolysis cells[J]. Electrochim. Acta, 2020,358136916.

    34. [34]

      ZHAO L, CHEN K F, LIU Y X, HE B B. A novel layered perovskite as symmetric electrode for direct hydrocarbon solid oxide fuel cells[J]. J. Power Sources, 2017,342:313-319.

    35. [35]

      FARHAN S, MOHSIN M, RAZA A H, ANWAR R, AHMAD B, RAZA R. Co-doped cerium oxide Fe0.25-xMnxCe0.75O2-δ as a composite cathode material for IT-SOFC[J]. J. Alloy. Compd., 2022,906164319.

  • 加载中
    1. [1]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    2. [2]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    3. [3]

      Huasen LuShixu SongQisen JiaGuangbo LiuLuhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035

    4. [4]

      Yuying JIANGJia LUOZhan GAO . Development status and prospects of solid oxide cell high entropy electrode catalysts. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1719-1730. doi: 10.11862/CJIC.20250124

    5. [5]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    6. [6]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    7. [7]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    8. [8]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    9. [9]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    10. [10]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    11. [11]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    12. [12]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    13. [13]

      Yan'e LIUShengli JIAYifan JIANGQinghua ZHAOYi LIXinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054

    14. [14]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    15. [15]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    16. [16]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    17. [17]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    18. [18]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    19. [19]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    20. [20]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

Metrics
  • PDF Downloads(2)
  • Abstract views(773)
  • HTML views(96)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return