Research process on radioactive 18F-labelled chemical agents as positron emission tomography imaging probes for tumour detection
- Corresponding author: Rui WU, wurui@snut.edu.cn Pengfei ZHANG, hftffc@163.com
Citation:
Rui WU, Yankun ZHANG, Jiufu LU, Pengfei ZHANG, Yang WANG. Research process on radioactive 18F-labelled chemical agents as positron emission tomography imaging probes for tumour detection[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(9): 1702-1718.
doi:
10.11862/CJIC.20240387
WU R, TIAN G H, ZHANG S R, ZHANG P F, LEI X Y. A comprehensive review: Versatile imaging probe based on chemical materials for biomedical applications[J]. Appl. Biochem. Biotechnol., 2024, 197: 1301-1328
QU B T, WANG Q, NING X G, ZHOU Y X, ZHANG R P. Deeply penetrating photoacoustic imaging in tumor tissues based on dual-targeted melanin nanoparticle[J]. Chinese. J. Inorg. Chem., 2024, 40: 1025-1032
VERMEULEN I, ISIN E M, BARTON P, PASTOR B C, HEEREN R M. Multimodal molecular imaging in drug discovery and development[J]. Drug Discov. Today, 2023, 27: 2086-2099
YOO S W, KWON S Y, KANG S R, MIN J J. Molecular imaging approaches to facilitate bacteria-mediated cancer therapy[J]. Adv. Drug Deliv. Rev., 2022, 187: 114366
VEEN E L, BENSCH F, GLAUDEMANS A W, HOOGE M N, VRIES E G. Molecular imaging to enlighten cancer immunotherapies and underlying involved processes[J]. Cancer Treatment Rev., 2018, 70: 232-244
LEEUWEN F W, SCHOTTELIUS M, MOTTAGHY F M, HYAFIL F, LUBBERINK M, MAREK G K, OYEN W J. Perspectives on translational molecular imaging and therapy: An overview of key questions to be addressed[J]. Semin Nucl. Med., 2022, 2: 12-31
YILMAZ D, SHARP P S, MAIN M J, SIMPSON P B. Advanced molecular imaging for the characterisation of complex medicines[J]. Drug Discov. Today, 2022, 27: 1716-1723
ZHANG S Q, GAO L H, ZHAO H, WANG K Z. pH-sensitive iridium, ruthenium and platinum complexes for tumor-specific fluorescence imaging and cancer therapy[J]. Chinese. J. Inorg. Chem., 2019, 35: 1974-1986
COMEAU Z J, LESSARD B H, SHUHENDLER A J. The need to pair molecular monitoring devices with molecular imaging to personalize health[J]. Mol. Imaging. Biol., 2022, 7: 1219-1236
LALUMERA E, FANTI S, BONIOLO G. Reliability of molecular imaging diagnostics[J]. Synthese, 2021, 198: 5701-5717
ZHENG G, DAI Z F. Molecular imaging[J]. Bioconjugate Chem., 2020, 31(2): 157-158
SAITO H, WATANABE H, ONO M. Synthesis and biological evaluation of novel 18F-labeled 2, 4-diaminopyrimidine derivatives for detection of ghrelin receptor in the brain[J]. Bioorg. Med. Chem. Lett., 2024, 99: 129625
WANG Z L, ZHU B, JIANG F, CHEN X P, WANG G F, DING N, SONG S L, XU X P, ZHANG W. Design, synthesis and evaluation of novel prostate-specific membrane antigen-targeted aryl [18F]fluorosulfate PET tracers[J]. Bioorg. Med. Chem., 2024, 106: 117753
ARIZA M, KOLB H C, MOECHARS D, ROMBOUTS F, ANDRES J L. Tau positron emission tomography (PET) imaging: Past, present, and future[J]. J. Med. Chem., 2018, 10: 232-236
GAWNE P J, MAN F, BLOWER P J, ROSALES R T. Direct cell radiolabeling for in vivo cell tracking with PET and SPECT imaging[J]. Chem. Rev., 2022, 122: 10266-10318
THOMPSON S, KILBOURN M R, SCOTT P J. Radiochemistry, PET imaging, and the internet of chemical things[J]. ACS Central Sci., 2016, 2: 497-505
KEINÄNEN O, BRENNA J M, MEMBRENO R, FUNG K, GANGANGRI K, DAYTS E J, WILLIAMS C J, ZEGLIS B M. Dual radionuclide theranostic pretargeting[J]. Mol. Pharm., 2019, 16: 4416-4421
MORADI F, IAGARU A, CONATHY J M. Clinical applications of PET/MR imaging[J]. Radiol. Clin. N. Am., 2021, 59: 853-874
BARUCH B S, WERNER R A, SCHUSTER, D M. PET imaging for prostate cancer[J]. Radiol Clin N Am, 2021, 59: 801-811
HONG Z Y, YU B, XIAO J C, FENG H Y, MA X W, CHENG Z, BU L H. A convenient and efficient solid phase extraction-based pathway for purification of melanin-targeted probe 18F-P3BZA[J]. Microchem. J., 2021, 164: 106008
ZHANG L J, PICóN F R, JIA Y Q, CHEN Y, LI J, HAN C L, ZHUANG X Q, XIA H C. Longitudinal [18F]FDG and [13N]NH3 PET/CT imaging of brain and spinal cord in a canine hemisection spinal cord injury model[J]. NeuroImage-Clin., 2021, 31: 102692
LIANG WS, NIE Y, WANG J, WU J, LIU H, WANG Q, HUANG LJ, GUO H, SHU B, LV J. Three-dimensional positron emission tomography/computed tomography analysis of 13NO3- uptake and 13N distribution in growing kohlrabi[J]. Anal. Chem., 2021, 83: 578-584
MOEIN M M, TÓTH M, TARI L, VARRONE A, ABDEL-REHIM M, HALLDIN C. New approach in radiometabolite analysis of positron emission tomography (PET) radioligands, lead-shielded microextraction by packed sorbent as a tool for in vivo radiometabolite analysis of [11C]SMW139 in rat plasma[J]. Talanta, 2020, 208: 120449
ZHAO A Y, BROOKS A F, RAFFEL D M, STAUFF J, ARTEAGA J, SCOTT P J, SHAO X. Fully automated radiosynthesis of [11C] guanidines for cardiac PET imaging[J]. ACS Med. Chem. Lett., 2020, 11: 2325-2330
OKAZAWA H, HIGASHINO Y, TSUJIKAWA T, ARISHIMA H, MORI T, KIYONO Y, KIMURA H, KIKUTA K. Noninvasive method for measurement of cerebral blood flow using O-15 water PET/MRI with ASL correlation[J]. Eur. J. Radiol., 2018, 105: 102-109
FAN A P, AN H, MORADI F, ROSENBERG J, ISHII Y, NARIAI T, OKAZAWA H, ZAHARCHUK G. Quantification of brain oxygen extraction and metabolism with [15O]-gas PET: A technical review in the era of PET/MRI[J]. NeuroImage, 2020, 220: 117136
BORN D, PEES A, POOT A J, ORRUN R V, WINDHORST A D, VUGTS D J. Fluorine-18 labelled building blocks for PET tracer synthesis[J]. Chem. Soc. Rev., 2017, 46: 4709-4773
FU Y X, HELBERT H, SIMETH N A, CRESPI S, SPOELSTRA G B, DIJL J M, OOSTEN M V, NAZARIO L R, BORN D V, LUURTSEMA G, SZYMANSKI, ELSINGA P H, FERINGA B L. Ultrafast photoclick reaction for selective 18F-positron emission tomography tracer synthesis in flow[J]. J. Am. Chem. Soc., 2021, 143: 10041-10047
ALLOTT L, ABOAGYE E O. Chemistry considerations for the clinical translation of oncology PET radiopharmaceuticals[J]. Mol. Pharm., 2020, 17: 2245-2259
LI Y X, LING Y, PARANjPE M D, GE Q, GU F Y, LI P, YAN S Z, LIU J, WANG X Y, ZHOU Y. Tracer-specific reference tissues selection improves detection of 18F-FDG, 18F-florbetapir, and 18F-flortaucipir PET SUVR changes in Alzheimer′s disease[J]. Hum. Brain Mapp., 2022, 43: 2121-2133
YUAN Y, SUN H B, YANG C, YANG H J, PAN L, ZHANG X Y, TIAN R, LI L J, CHEN W, WU X A, WU H X. Difluorocarbene-derived rapid late-stage trifluoromethylation of 5-iodotriazoles for the synthesis of 18F-labeled radiotracers[J]. Chin. Chem. Lett., 2023, 34: 107960
MUKAI H, WATANABE Y. Review: PET imaging with macro- and middle-sized molecular probes[J]. Nucl. Med. Biol., 2021, 92: 156-170
NIAZ M J, SUN M, SKAFIDA M, NIAZ M O, LVANIDZE J, OSBORNE J R, DWYER E D. Review of commonly used prostate specific PET tracers used in prostate cancer imaging in current clinical practice[J]. Clin. Imaging, 2021, 79: 278-288
MASON C, GIMBLET G R, LAPI S E, LEWIS J S. Novel tracers and radionuclides in PET imaging[J]. Radiol. Clin. N. Am., 2021, 59: 887-918
MATHAVAN N, KOOPMAN J, RAINA D B, TURKIEWICZ A, TAGIL M, ISAKSSON H. 18F-fluoride as a prognostic indicator of bone regeneration[J]. Acta Biomater., 2019, 90: 403-411
KAHLE X U, JESUS F M, GLAUDEMANS A W, HOOGE M N, SMIT A J, PLATTEL W J, MEERTEN T V, DIEOSTRA A, BERG A V, KWEE T C, NOORDZIJ W, VRIES E G, NIjLAND M. Molecular imaging in lymphoma beyond 18F-FDG-PET: Understanding the biology and its implications for diagnostics and therapy[J]. Lancet Haematol., 2020, 7: 479-489
DEJANOVIC D, SPECHT L, CZYZEWSKA D, BERTHELSEN A K, LOFT A. Response evaluation following radiation therapy with 18F-FDG PET/CT: Common variants of radiation-induced changes and potential pitfalls[J]. Semin. Nucl. Med., 2022, 52: 681-686
HOVHANNISYAN N, DHILLY M, GUILLOUET S, LEPORRIER M, BARRE L. Comparative analysis between [18F]Fludarabine-PET and [18F]FDG-PET in a murine model of inflammation[J]. Mol. Pharm., 2016, 13: 2136-2139
LIU W, TRUILLET C, FLAVELL R R, BREWER T F, EVANS M J, WILSON D M, CHANG D M. A reactivity-based [18F]FDG probe for in vivo formaldehyde imaging using positron emission tomography[J]. Chem. Sci., 2016, 7: 5503-5507
FLAVELL R R, TRUILLET C, REGAN M K, GANGULY T, BLECHA J E, KURHANEWICZ J, VANBROCKLIN H F, KESHARI K R, CHANG C J, EVANS M J, WILSON D M. Caged [18F]FDG glycosylamines for imaging acidic tumor microenvironments using positron emission tomography[J]. Bioconjugate Chem., 2016, 27: 170-178
BÖHMER V I, SZYMANSKI W, FERINGA B L, ELSINGA P H. Multivalent probes in molecular imaging[J]. Trend Mol. Med., 2021, 27: 379-393
PRETZE M, NEUBER C, KINSKI E, BELTER B, KöCKERLING M, CAFLISCH A, STEINBACH J, PIETZSCH J, MAMAT C. Synthesis, radiolabelling and initial biological characterisation of 18F-labelled xanthine derivatives for PET imaging of Eph receptors[J]. Org. Biomol. Chem., 2020, 18: 3104-3116
LIU W, TRUILLET C, FLAVELL R R, BREWER T F, EVANS M J, WILSON D M, CHANG C J. A reactivity-based [18F]FDG probe for in vivo formaldehyde imaging using positron emission tomography[J]. Chem. Sci., 2016, 7: 5503-5507
LAUDICELLA R, QUARTUCCIO N, ARGIROFFI G, ALONGI P, BARATTO L, CALIFARETTI V, FRANTELLIZZI V, VINCENTIS G D, SOLE A D, EVANGELISTA L, BALDARI S, BISDAS S, CECI F, LAGARU A. Unconventional non-amino acidic PET radiotracers for molecular imaging in gliomas[J]. Eur. J. Nucl. Med. Mol. I., 2021, 49: 2104-2113
VERGER A, STEGMAYR C, GALLDIKS N, GUCHT A V, LOHMANN P, STOFFELS G, SHAH N J, FINK G R, EICKHOFF S B, GUEDJ E, LANGEN K J. Evaluation of factors influencing 18F-FET uptake in the brain[J]. NeuroImage‒Clin., 2018, 17: 491-497
ALLOTT L, BARNES C, BRICKUTE D, ABOAGYE E O. An improved automated radiosynthesis of [18F]FET-βAG-TOCA[J]. React. Chem. Eng., 2019, 4: 569-474
SHI D Z, DONG Y, ZHOU W L, BAI L, HUANG J, HAN Y J, SUN P H, HUANG Y C, HUANG Y, CHEN L, CAO M, WU H, HUANG S. Pharmacokinetic analysis of 6-O-[18F]FEE for PET imaging of EGFR mutation[J]. Bioorgan. Med. Chem., 2023, 85: 129217
NAGACHINTA S, DAMMICCO D, JOYARD Y, MAINDRON N, RISS P. P-154: Automated radiosynthesis of [18F]DOPA and [18F]FMT via copper-mediated nucleophilic F-18 fluorination of arylstannanes on a new synthesizer[J]. Nucl. Med. Biol., 2022, 108: S133-S144
VUS S, MODEMANN D, URUSOVA E, ERMERT J, ENDEPOLS H, ZLATOPOLSKIY B, NEUMAIER B. SP-008: 5-[18F]Fluoro-m-tyrosine (5-[18F]FMT)-a novel promising tracer for dopaminergic imaging[J]. Nucl. Med. Biol., 2021, 96: 38-97
VERGER A, KAS A, GUEDj E. Joint SFMN/ANOCEF focus on 18F-FDOPA PET imaging in glioma: Current applications and perspectives[J]. Med. Nucl., 2020, 44: 164-171
VERSEL J L, EISENBERG D P, MARENCO S, KOHN P D, GREGORY M D, GZARAPATA J B, BERMAN K F. P564: Frontostriatal neurochemical profiling of the healthy human brain using magnetic resonance spectroscopy and [18F]-FDOPA positron emission tomography[J]. Biol. Psychiat., 2022, 91: S317
PICKEL T C, VOLL R J, YU W, WANG Z B, NYE J A, BACSA J, OLSON J J, LIEBESKIND S, GOODMAN M M. Synthesis, radiolabeling, and biological evaluation of the cis stereoisomers of 1-amino-3-fluoro-4-(fluoro-18F)cyclopentane-1-carboxylic acid as PET imaging agents[J]. J. Med. Chem., 2020, 63: 12008-12022
CESARIA M, ARIMA V, RELLA S, MALITESTA C, MARTUCCI M C, MANERA M G, TOLOMEO A, SCILIMATI A, RELLA R. [18F]F-DOPA synthesis by poly(dimethylsiloxane)-based platforms: Thermal aging protocol to reduce chemicals-induced damage[J]. Sensor Actuator B‒Chem., 2018, 254: 143-152
PICKEL T C, PASHIKANTI G, VOLL R J, YU W P, ZHANG Z, NYE J A, BACSA J, OLSON J J, LIEBESKIND L S, GOODMAN M M. Synthesis, radiolabeling, and biological evaluation of the trans-stereoisomers of 1-amino-3-(fluoro-18F)-4-fluorocyclopentane-1-carboxylic acid as PET imaging agents[J]. ACS Pharmacol. Transl. Sci., 2021, 4: 1195-1203
YANG Y, XU S T, GAI Y L, ZHANG B, CHEN L. Recent progresses in lanthanide metal-organic frameworks (Ln-MOFs) as chemical sensors for ions, antibiotics and amino acids[J]. Chin. J. Struct. Chem., 2022, 41: 2211045-2211070
GOURAND F, PATIN D, HENRY A, LBAZIZENE M, DHILLY M, FILLESOYE F, TIREL O, TINATAS M L, PAPAMICEL C, LEVACHER V, BARRE L. Chemical delivery system of MIBG to the central nervous system: Synthesis, 11C-radiosynthesis, and in vivo evaluation[J]. ACS Med. Chem. Lett., 2019, 10: 352-357
KING A, DOEPNER A, TURTON D, CIOBOTA D M, PIEVE C D, FONG A C, MAREK G K, CHUNG Y L, SMITH G. Radiosynthesis of the anticancer nucleoside analogue trifluridine using an automated 18F-trifluoromethylation procedure[J]. Org. Biomol. Chem., 2018, 16: 2986-2996
BRICKUTE D, BECKLEY A, ALLOTT L, BRAGA M, BARNES C, THORLEY K J, ABOAGYE E O. Synthesis and evaluation of 3′-[18F] fluorothymidine-5′-squaryl as a bioisostere of 3′-[18F] fluorothymidine-5′-monophosphate[J]. RSC Adv., 2021, 11: 12423-12433
LI J D, VALKENBURGH J V, CONTI P S, CHEN K. Exploring solvent effects in the radiosynthesis of 18F-labeled thymidine analogues toward clinical translation for positron emission tomography imaging[J]. ACS Pharmacol Transl. Sci., 2021, 4: 266-275
ZADEH A S, REZAEYAN A, SARIKHANI A, GHAFFARI H, SAMADIAN H, KYADEMI S, GHAZNAVI H, BULTE J W. Folate receptor-targeted nanoprobes for molecular imaging of cancer[J]. Nano Today, 2021, 39: 101173
FAHEEM S, RIZVI A, ZHANG H X. Emerging trends of receptor-mediated tumor targeting peptides: A review with perspective from molecular imaging modalities[J]. Eur. J. Med. Chem., 2021, 221: 113538
DOOT R K, DUBROFF J G, LABBAN K J, MACH R H. Selectivity of probes for PET imaging of dopamine D3 receptors[J]. Neurosci Lett., 2018, 691: 18-25
SYVäNEN S, FANG X T, FARESjö R, ROKKA J, LANNFELT L, OLBERG D E, ERIKSSON J, SEHLIN D. Fluorine-18-labeled antibody ligands for PET imaging of amyloid-β in brain[J]. ACS Chem. Neurosci., 2022, 11: 446-448
SCHMITTHENNER H F, BARRETT T M, BEACH S A, HEESE L E, WEIDMAN C, DOBSON D E, MAHONEY E R, SCHUG N C, JONES K G, DURMAZ C, OTASOWIE O, ARONOW S, LEE Y P, OPHARDT H D, BECKER A E, HORNAK J P, EVANS L M, FERRAN M C. Modular synthesis of peptide-based single- and multimodal targeted molecular imaging agents[J]. ACS Appl. Bio. Mater., 2021, 4: 5435-5448
PEES A, VASDEV N. A one-pot radiosynthesis of [18F]FMPEP-d2 for imaging the cannabinoid receptor 1[J]. J. Fluorine. Chem., 2023, 272: 110194
LIN Y X, LIU J F, BAI R, SHI J M, ZHU X M, LIU J, GUO J, ZHANG W, LIU H, LIU Z Q. Mitochondria-inspired nanoparticles with microenvironment-adapting capacities for on-demand drug delivery after ischemic injury[J]. ACS Nano, 2020, 14: 11846-11859
LI K X, SUN H Z, LU Z M, XIN J, ZHANG L, GUO Y, GUO Q Y. Value of [18F]FDG PET radiomic features and VEGF expression in predicting pelvic lymphatic metastasis and their potential relationship in early-stage cervical squamous cell carcinoma[J]. Eur. J. Radiol., 2018, 106: 160-166
YANG L L, LIU S S, CHU J J, MIAO S, WANG K, ZHANG Q W, WANG Y Y, XIAO Y D, WU L, LIU Y, YU L J, YU C H, LIU X, KE M X, CHENG Z, SUN X L. Novel anilino quinazoline-based EGFR tyrosine kinase inhibitors for treatment of non-small cell lung cancer. Biomater[J]. Science, 2021, 92: 443-455
KIMURA H, OKUDA H, ISHIGURO M, ARIMITSU K, MAKINO A, NISHII R, MIYAZAKI A, YAGI Y, WATANABE H, KAWASAKI I, ONO M, SAJI H. 18F-labeled pyrido[3, 4-d]pyrimidine as an effective probe for imaging of L858R mutant epidermal growth factor receptor[J]. ACS Med. Chem. Lett., 2017, 8: 418-422
SHI X D, GAO K, HUANG H, GAO R. Pretargeted immuno-PET based on bioorthogonal chemistry for imaging EGFR positive colorectal cancer[J]. Bioconjugate Chem., 2018, 29: 250-254
SU X H, CHENG K, JEON J, SHEN B, VENTURIN G T, HU X, RAO J H, CHIN F T, WU H, CHENG Z. Comparison of two site-specifically 18F-labeled affibodies for PET imaging of EGFR positive tumors[J]. Mol Pharm., 2014, 11: 3947-3956
MASCHAUER S, HEILMANN M, WäNGLER C, SCHIRRMACHER R, PRANTE O. Radiosynthesis and preclinical evaluation of 18F-fluoroglycosylated octreotate for somatostatin receptor imaging[J]. Bioconjugate Chem., 2016, 27: 2707-2714
SEULKI L, XIE J, CHEN X Y. Peptides and peptide hormones for molecular imaging and disease diagnosis[J]. Chem. Rev., 2010, 110: 3087-3111
RICHTER S, WUEST M, BERGMAN C N, WAY J D, KRIEGER S H, ROGERS S, WUEST F. Rerouting the metabolic pathway of 18F-labeled peptides: The influence of prosthetic groups[J]. Bioconjugate Chem., 2015, 26: 201-212
KIM H L, SACHIN K, JEONG H J, CHOI W S, LEE H S, KIM D W. F-18 labeled RGD probes based on bioorthogonal strain-promoted click reaction for PET imaging[J]. ACS Med Chem. Lett., 2015, 6: 402-407
LIU S. Radiolabeled cyclic RGD peptide bioconjugates as radiotracers targeting multiple integrins[J]. Bioconjugate Chem., 2015, 26: 1413-1438
YAO L, LI Y, CHEN H J, WEN X J, PANG Y Z, CHEN Z J, GUO Z D, ZHANG X Z, WU H, GUO W. Dual targeting of integrin αvβ3 and neuropilin-1 receptors improves micropositron emission tomography imaging of breast cancer[J]. Mol. Pharm., 2022, 19: 1458-1467
ZHANG Q Y, LIANG J Y, YUN S L, LIANG K, YANG D Y, GU Z. Recent advances in improving tumor-targeted delivery of imaging nanoprobes[J]. Biomater. Sci., 2020, 8: 4129-4146
THOMPSON S, FLEMING I N, HAGANAND O D. Enzymatic transhalogenation of dendritic RGD peptide constructs with the fluorinase[J]. Org. Biomol. Chem., 2016, 14: 3120-3129
RAJALA N, KERMINEN E K, SALO S A, VAKIPARTA M J J, KIRJAVAINEN A. Automated cassette based synthesis of novel CB1 receptor tracer [18F]FPATPP produced via Ru-mediated 18F-fluorination[J]. Nucl. Med. Biol., 2023, 126: 108469
ZHUANG X Q, KUNNAS J, SRINIVASARAO M, LOW P, KNUUTI J, SARASTE A, PHILIPPE C, ROIVAINEN A, LI X G. Efficient radiosynthesis of a new folate receptor-targeting PET tracer, [18F]fluoronicotinic acid labeled folate, for imaging lung fibrosis[J]. Nucl. Med. Biol., 2023, 126: 108498
FUjINAGA M, OHKUBO T, SHIMOjO M, NAGAI Y, ONO M, MATSUSHITA Y. Development of a novel positron emission tomography probe deuterated [18F]FE-TMP ([18F]FE-TMP-d4), an antagonist of escherichia coli dihydrofolate reductase, for reporter gene imaging of the brain[J]. J. M. Chem, 2025, 68: 12733-12744
WANG X Y, RONG G Y, YAN J J, PAN D H, WANG L Z, XU Y P, YANG M, CHENG Y Y. In vivo tracking of fluorinated polypeptide gene carriers by positron emission tomography imaging[J]. ACS Appl. Mater. Interfaces, 2020, 12: 45763-45771
BAI P, LAN Y, WANG H, LIU Y, STRIAR R, YUAN G Y, AFSHAR S, ZAGAROLI J S, TOCCI D R, LANGAN A G, WANG C N. Synthesis and characterization of a positron emission tomography imaging probe selectively targeting the second bromodomain of bromodomain protein BRD4[J]. Bioconjugate Chem., 2021, 32: 1711-1718
GREGORY D B, SOPHIE S, GINA D, SABRINA H, ELENA K, MARTIN S, BETTINA W, KRISTINA H, BERND J P, ANDREAS M. [18F]pFBC, a covalent CLIP-tag radiotracer for detection of viral reporter gene transfer in the murine brain[J]. Bioconjugate Chem., 2024, 35: 254-264
OKKELS N, HORSAGER J, ESPINOSA M A L, HANSEN F O, ANDERSEN K B, JUST M K, FEDOROVA T D, SKJABAEK C, MUNK O L, HANSEN K V, GOTTRUP H, HANSEN A K, GROTHE M J, BORGHAMMER P. Distribution of cholinergic nerve terminals in the aged human brain measured with [18F]FEOBV PET and its correlation with histological data[J]. NeuroImage, 2023, 269: 119908
SHEN J J, ZHANG W L, HE Y N. AIEgen-terminated charge-switchable zwitterionic azo polymer for tumor hypoxia imaging[J]. ACS Appl. Poly. Mater., 2022, 4: 6659-6666
HUANG L, LI Z J, ZHANG X Z. Radiotracers for nuclear imaging of reactive oxygen species: Advances made so far[J]. Bioconjugate Chem., 2020, 33: 749-766
WILLIAMS E M, RICH M H, MOWDAY A M, ASHOORZADEH A, COPP J N, GUISE C P, ANDERSON R F, FLANAGAN J U, SMAILL J B, PATTERSON A V, ACKERLEY D F. Engineering escherichia coli NfsB to activate a hypoxia-resistant analogue of the PET probe EF5 to enable non-invasive imaging during enzyme prodrug therapy[J]. Biochemistry, 2019, 58: 3700-3710
SANDULEANU S, HAMMING-VRIEZE O, WESSELINGe F W R, EVEN A J, HOEBERS F J, HOEBEN A, VOGEL W V, TESSELAAR M E, PARVIN D, BARTELINK H, LAMBIN P. [18F]-HX4 PET/CT hypoxia in patients with squamous cell carcinoma of the head and neck treated with chemoradiotherapy: Prognostic results from two prospective trials[J]. Clin. Transl. Rad. Onco., 2022, 23: 9-15
RIHAN K M D, MARC S M D. PET imaging of tumour hypoxia in head and neck cancer: A primer for neuroradiologists[J]. Neuroimaging Clin. N. Am., 2020, 30: 325-339
HE H Z, ZHANG X D, DU L H, YE M W, LU Y L, XUE J J, WU J, SHUAI X T. Molecular imaging nanoprobes for theranostic applications[J]. Adv. Drug Deliv. Rev., 2021, 186: 114320
YANG E P, LIU Q F, HUANG G, LIU J J, WEI W J. Engineering nanobodies for next-generation molecular imaging[J]. Drug Discov. Today, 2022, 227: 1622-1638
LI J J, CHENG F F, HUANG H P, LI L L, ZHU J J. Nanomaterial-based activatable imaging probes: From design to biological applications[J]. Chem. Soc. Rev., 2015, 44: 7855-7880
SUN X L, CAI W B, CHEN X Y. Positron emission tomography maging using radiolabeled inorganic nanomaterials[J]. Accounts Chem. Res., 2015, 48: 286-294
SMITH B R, GAMBHIR S S. Nanomaterials for in vivo imaging[J]. Chem. Rev., 2017, 117: 901-986
ZHANG X, ZHOU j, GU Z W, ZHANG H, GONG Q Y, LUO K. Advances in nanomedicines for diagnosis of central nervous system disorders[J]. Biomaterials, 2020, 269: 120492
FAN W P, YUNG B Y, HUANG P, CHEN X Y. Nanotechnology for multimodal synergistic cancer therapy[J]. Chem. Rev., 2022, 22: 13566-13638
KIM D, KIM J, PARK Y, LEE N, HYEON T. Recent development of inorganic nanoparticles for biomedical imaging[J]. ACS Central. Sci., 2018, 4: 324-336
BOUCHé M, HSU J C, YUXI C. DONG Y C, KIM J, TAING K, CORMODE D P. Recent advances in molecular imaging gold nanoparticles[J]. Bioconjugate Chem., 2020, 31: 303-314
MAURO P P, GóMEZ-VALLEjO V, MALDONADO Z B, ROIG J L, BORRóS S. Novel 18F labeling strategy for polyester-based NPs for in vivo PET-CT imaging[J]. Bioconjugate Chem., 2015, 26: 582-592
PELLICO J, GAWNE P J, ROSALES R T. Radiolabelling of nanomaterials for medical imaging and therapy[J]. Chem Soc. Rev., 2021, 50: 3355-3423
WU R, LU J F, SONG J, LIU C F, ZHANG Q, TIAN G H. Hydroxyapatite loaded radiolabeled 18F as molecular imaging nanoprobe for biomedical application[J]. Chinese. J. Inorg. Chem., 2019, 35: 891-900
BOROS E, PACKARD A B. Radioactive transition metals for imaging and therapy[J]. Chem. Rev., 2019, 119: 870-901
GE J X, CHEN L, HUANG B X, GAO Y, ZHOU D D, ZHOU Y, CHEN C, WEN L, LI Q, ZENG J F, ZHONG Z Y, GAO M Y. Anchoring group-mediated radiolabeling of inorganic nanoparticles-A universal method for constructing nuclear medicine imaging nanoprobes[J]. ACS Appl. Mater. Interfaces., 2020, 14: 8838-8846
SHABBIR R, MINGARELLI M, CABELLO G, HERK M V, CHOUDHURY A, SMITH M A. EGFR targeting of [177Lu] gold nanoparticles to colorectal and breast tumour cells: Affinity, duration of binding and growth inhibition of Cetuximab-resistant cells[J]. J. King Saud. Univ. Sci., 2021, 33: 101573
TAMARIT F C, BARYZEWSKA A, LLEDOS M, PASCU S I. Zirconium-89 radio-nanochemistry and its applications towards the bioimaging of prostate cancer[J]. Inorg. Chim. Acta, 2021, 496: 119041
BLOWER P J, LEVASON W, LUTHRA S K, MCROBBIE G, MONZITTU F M, MULES T O, REID G, SUBHAN M N. Exploring transition metal fluoride chelates-synthesis, properties and prospects towards potential PET probes[J]. Dalton Trans., 2019, 48: 6767-6776
SELVAN S T, RAVICHANDAR R, GHOSH K K, MOHAN A, MAHALAKSHMI P, GULYáS B, PADMANABHAN P. Coordination chemistry of ligands: Insights into the design of amyloid beta/tau-PET imaging probes and nanoparticles-based therapies for Alzheimer′s disease[J]. Coord. Chem. Rev., 2020, 430: 213659
FIRTH G, BLOWER J E, BARTNICKA J J. Non-invasive radionuclide imaging of trace metal trafficking in health and disease: "PET metallomics"[J]. RSC Chem. Biol., 2022, 3: 495-518
ZACHERL M J, TODICA A, WANGLER C, SCHIRRMACHER R, HAJEBRAHIMI M A, PIRCHER J, LI X, LINDER S, BRENDEL M, BARTENSTEIN P, MASSBERG S, BRUNNER S, LEHNER S, HACKER M, HUBER B C. Molecular imaging of cardiac CXCR4 expression in a mouse model of acute myocardial infarction using a novel 68Ga-mCXCL12 PET tracer[J]. J. Nuc. Cardiol., 2021, 28: 2965-2975
TAUBEL J C, NELSON N R, BANSAL A, CURRAN G L, WANG L, WANG Z T, BERG H M, VERNON C J, MIN H K, LARSON N B, DEGRADO T R, KANDIMALLA K K, LOWE V J, PANDEY M K. Design, synthesis, and preliminary evaluation of [68Ga]Ga-NOTA-insulin as a PET probe in an alzheimer′s disease mouse model[J]. Bioconjugate Chem., 2022, 33: 892-906
JOAQUI M A, PANDEY M K, BANSAL A, RAJU R, PAVLIK F A, DUNDAR A, WONG H L, DEGRADO T R, PIERRE V C. Catechol-based functionalizable ligands for gallium-68 positron emission tomography imaging[J]. Inorg. Chem., 2022, 59: 12025-12038
YAP S Y, PRICE T W, SAVOIE, H, BOYLE R W, STASIUK G J. Selective radiolabelling with 68Ga under mild conditions: A route towards a porphyrin PET/PDT theranostic agent[J]. Chem. Commun., 2018, 54: 7952-7954
GIL J H, BRAGA M, HARRISS BI, CARROL L S, LEOW C H, TANG M X, ABOAGYE E O, LONG N J. Development of 68Ga-labelled ultrasound microbubbles for whole-body PET imaging[J]. Chem. Sci., 2019, 10: 5603-5615
WU R, LIU S, LIU Y J, SUN Y L, XIAO H, HUANG Y, YANG Z, WU Z H. PET probe with aggregation induced emission characteristics for the specific turn-on of aromatase[J]. Talanta, 2020, 208: 120412
SZABÓ J P, CSIGE K, SZABÓ I K, ARATÓ V, OPPOSITS G, JÓSZAI I, KERTÉSZ I, KÉPES Z, MÉHES G, FENYVESI F, HAJDU I, TRENCSÉNYI G. In vivo assessment of tumor targeting potential of 68Ga-labelled randomly methylated beta-cyclodextrin (RAMEB) and 2-hydroxypropyl-β-cyclodextrin (HPβCD) using positron emission tomography[J]. Int. J. Pharm., 2022, 630: 122462
GIZAWY A M, ABDELMONEM I M, ELSHARMA E M, EMARA A M. Separation of 64+67Cu(Ⅱ) from irradiated natural zinc target by sodium alginate-polyacrylic acid/nanohalloysite composite[J]. Microchem. J., 2023, 191: 108769
BARTNICKA J J, AL-SALEMEE F, FIRTH G, BLOWER P J. L-cysteine-mediated modulation of copper trafficking in prostate cancer cells: An in vitro and in vivo investigation with 64Cu and 64Cu-PET[J]. Metallomics, 2020, 12: 1508-1520
HUANG Y R, CHO H J, BANDARA N, SUN L, TRAN D, ROGERS B E, MIRICA L M. Metal-chelating benzothiazole multifunctional compounds for the modulation and 64Cu PET imaging of Aβ aggregation[J]. Chem. Sci., 2022, 11: 7789-7799
WANG Y J, HUYNH T T, BANDARA N, CHO H J, ROGERS B E, MIRICA L M. 2-(4-Hydroxyphenyl)benzothiazole dicarboxylate ester TACN chelators for 64Cu PET imaging in Alzheimer′s disease[J]. Dalton Trans., 2022, 51: 1216-1224
MA W H, FU F F, ZHU Y J, HUANG R, ZHU Y Z, LIU Z W, WANG J, CONTI P S, SHI X Y, CHEN K. 64Cu-labeled multifunctional dendrimers for targeted tumor PET imaging[J]. Nanoscale, 2018, 10: 6113-6124
COLLIGNON A M, LESIEUR J, ANIZAN N, AZZOUNA R B, POLIARD A, GORIN C, LETOURNEUR D, CHAUSSAIN C, ROUZET F, ROCHEFORT G Y. Early angiogenesis detected by PET imaging with 64Cu-NODAGA-RGD is predictive of bone critical defect repair[J]. Acta Biomater., 2018, 82: 111-121
KAMA D V, FREI A, BRINK A, BRABAND H, ALBERTO R, ROODT A. New approach for the synthesis of water soluble fac-[MI(CO)3]+ bis(diarylphosphino)alkylamine complexes (M=99Tc, Re)[J]. Dalton Trans., 2021, 50: 17506-17514
CAO T Y, ZHOU X B, ZHENG Y Y, SUN Y Y, ZHANG J, CHEN W, ZHANG J P, ZHOU Z G, YANG S P, ZHANG Y G, YANG H, WANG M W. Chelator-free conjugation of 99mTc and Gd3+ to PEGylated nanographene oxide for dual-modality SPECT/MR imaging of lymph nodes[J]. ACS Appl. Mater. Interfaces, 2017, 9: 42612-42621
URBANO N, SCIMECA M, TANCREDI V, BONANNO E, SCHILLACI, O. 99mTC-sestamibi breast imaging: Current status, new ideas and future perspectives[J]. Semin. Cancer Biol., 2020, 84: 302-309
ZHANG M L, LI S F, ZHANG H, XU H W. Research progress of 18F labeled small molecule positron emission tomography (PET) imaging agents[J]. Eur. J. Med. Chem., 2020, 205: 112629
AKBARI B, HUBER B R, SHERMAN J H. Unlocking the hidden depths: Multi-modal integration of imaging mass spectrometry-based and molecular imaging techniques[J]. Crit. Rev. Anal. Chem., 2023, 307: 1-30
SHEIKHBAHAEI S, MENA E, PATTANAYAK P, TAGHIPOUR M, SOLNES L B, SUBRAMANIAM R M. Molecular imaging and precision medicine: PET/computed tomography and therapy response assessment in nncology[J]. PET Clinics., 2017, 12: 105-118
PRODI L, RAMPAZZO E, RASTRELLI F, SPEGHINI A, ZACCHERONI N. Imaging agents based on lanthanide doped nanoparticles[J]. Chem. Soc. Rev., 2015, 44: 4922-4952
SCHÜTZ M B, RENNER A M, LLYASL S, LE K, GULIYEV M, KRAPF P, NEUMAIER B, MATHUR S. 18F-labeled magnetic nanovectors for bimodal cellular imaging[J]. Biomater. Sci., 2021, 9: 4717-4727
WANG D, ASTRUC D. The recent development of efficient earth-abundant transition-metal nanocatalysts[J]. Chem. Soc. Rev., 2017, 46: 816-854
LI Y H, LIU J, QIN X J, DENG Y, ZHANG J P, SUN Y. Ultrafast synthesis of fluorine-18 doped bismuth based upconversion nanophosphors for tri-modal CT/PET/UCL imaging in vivo[J]. Chem. Commun., 2019, 50: 7259-7262
GULZAR A, XU J T, YANG P P, HE F, XU L G. Upconversion processes: Versatile biological applications and biosafety[J]. Nanoscale, 2017, 9: 12248-12282
CUI X, GREEN M A, BLOWER P J, ZHOU D, YAN Y, ZHANG W, DJANASHVILI K, MATHE D, VERES D S, SZIGETI K. Al(OH)3 facilitated synthesis of water-soluble, magnetic, radiolabelled and fluorescent hydroxyapatite nanoparticles[J]. Chem. Commun., 2015, 45: 9332-9335
SUN Z Y, CHENG K, WU F Y, LIU H G, MA X W, SU X H, LIU Y, XIA L M, CHENG Z. Robust surface coating for a fast, facile fluorine-18 labeling of iron oxide nanoparticles for PET/MR dual-modality imaging[J]. Nanoscale., 2016, 8: 19644-19653
ESFAHANI S A, TORRADO C A, AMORIM B J, GROSHAR D, DOMACHEVSKY L, BERNSTINE H, STEIN D, GERVAIS D, CATALANO O A. PET/MRI and PET/CT radiomics in primary cervical cancer: A pilot study on the correlation of pelvic PET, MRI, and CT derived image features[J]. Mol. Imaging. Biol., 2022, 24: 60-69
WANG Y H, SONG S Y, ZHANG S T, ZHANG H G. Stimuli-responsive nanotheranostics based on lanthanide-doped upconversion nanoparticles for cancer imaging and therapy: Current advances and future challenges[J]. Nanotoday, 2019, 25: 38-67
HENDRIS W, RYUICHI H, SHOZO F. Current progress and future directions in non-alzheimer′s disease tau PET tracers[J]. ACS Chem. Neurosci., 2025, 16: 111-127
CHANSAENPAK K, WANG M Z, WU Z H, ZAMAN R, LI Z B, GABBAI F P. [18F]-NHC-BF3 adducts as water stable radio-prosthetic groups for PET imaging[J]. Chem. Commun., 2015, 51: 12439-12442
JACOBSON O, KIESEWETTER D O, CHEN X Y. Fluorine-18 radiochemistry, labeling strategies and synthetic routes[J]. Bioconjugate Chem., 2015, 26: 1-18
WANG T, LV S J, MOU Z B, ZHANG Z R, DONG T T, LI Z J. Isotope exchange-based 18F-labeling methods[J]. Bioconjugate Chem., 2023, 34: 140-161
YU Q, ZHOU D L, MA J J, SONG C L. Decarboxylative nucleophilic fluorination of aliphatic carboxylic acids[J]. Org. Lett., 2024, 26: 4257-4261
PRESHLOCK S, TREDWELL M, GOUVERNEUR V. 18F-labeling of arenes and heteroarenes for applications in positron emission tomography[J]. Chem. Rev., 2016, 116: 719-766
KUMAR K, GHOSH A. 18F-AlF labeled peptide and protein conjugates as positron emission tomography imaging pharmaceuticals[J]. Bioconjugate Chem., 2018, 29: 953-975
WU D, YANG K K, ZHANG Z K, FENG Y X, RAO L, CHEN X Y, YU G C. Metal-free bioorthogonal click chemistry in cancer theranostics[J]. Chem. Soc. Rev., 2022, 51: 1336-1376
ALLOTT L, AMGHEIB A, BARNES C, BRAGA M, BRICKUTE D, WANG N, FU R, MAGHAMI S G, ABOAGYE E O. Radiolabelling an 18F biologic via facile IEDDA "click" chemistry on the GE FASTLab™ platform[J]. React. Chem. Eng., 2021, 6: 1070-1078
LIU X H, HUAN C Y, ZHANG X F, ZHANG W. Difluorocarbene-enabled synthesis of 18F-radiotracers in positron emission tomography[J]. J. Fluorine. Chem., 2024, 274: 110253
DENG X Y, ZHU X H. Recent advances of S-18F radiochemistry for positron emission tomography[J]. ACS Omega, 2023, 8: 37720-37730
Jing-Jing Zhang , Lujun Lou , Rui Lv , Jiahui Chen , Yinlong Li , Guangwei Wu , Lingchao Cai , Steven H. Liang , Zhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342
Donghui PAN , Yuping XU , Xinyu WANG , Lizhen WANG , Junjie YAN , Dongjian SHI , Min YANG , Mingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468
Boran Cheng , Lei Cao , Chen Li , Fang-Yi Huo , Qian-Fang Meng , Ganglin Tong , Xuan Wu , Lin-Lin Bu , Lang Rao , Shubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969
Lingjun Sha , Bing Bo , Jiayu Li , Qi Liu , Ya Cao , Jing Zhao . Precise assessment of lung cancer-derived exosomes based on dual-labelled membrane interface. Chinese Chemical Letters, 2025, 36(4): 110109-. doi: 10.1016/j.cclet.2024.110109
Xiaosheng Zhao , Jie Gao , Kun Shi , Chixiang Zhang , Wenliang Ma , Guo Lyu , Jun Zhang , Jing Lu , Qiangqiang Liu , Xianjin Luo , Kunru Yu , Jianguo Li , Qiang Ge , Jiming Cai , Chang Liu , Zhiyong Qian . A new radioactive microsphere: Y-90 carbon microsphere for selective internal radiation therapy of advanced liver cancer. Chinese Chemical Letters, 2025, 36(8): 110662-. doi: 10.1016/j.cclet.2024.110662
Yang Li , Yihan Chen , Jiaxin Luo , Qihuan Li , Yiwu Quan , Yixiang Cheng . Enhanced circularly polarized luminescence emission promoted by achiral dichroic oligomers of F8BT in cholesteric liquid crystal. Chinese Chemical Letters, 2024, 35(11): 109864-. doi: 10.1016/j.cclet.2024.109864
Shihong Wu , Ronghui Zhou , Hang Zhao , Peng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026
Xiaohong Wen , Mei Yang , Lie Li , Mingmin Huang , Wei Cui , Suping Li , Haiyan Chen , Chen Li , Qiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291
Gongcheng Ma , Qihang Ding , Yuding Zhang , Yue Wang , Jingjing Xiang , Mingle Li , Qi Zhao , Saipeng Huang , Ping Gong , Jong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293
Zhihui Zhang , Ru Sun , Chong Bian , Hongbo Wang , Zhen Zhao , Panpan Lv , Jianzhong Lu , Haixin Zhang , Hulie Zeng , Yuanyuan Chen , Zhijuan Cao . A dual-protease-triggered chemiluminescent probe for precise tumor imaging. Chinese Chemical Letters, 2025, 36(2): 109784-. doi: 10.1016/j.cclet.2024.109784
Tianyu Sun , Zhoujun Dong , Paul Michael Malugulu , Tengfei Zhen , Lei Wang , Yao Chen , Haopeng Sun . Advances in design strategies and imaging applications of specific butyrylcholinesterase probes. Chinese Chemical Letters, 2025, 36(7): 110451-. doi: 10.1016/j.cclet.2024.110451
Junliang Zhou , Tian-Bing Ren , Lin Yuan . The strategy to improve the brightness of organic small-molecule fluorescent dyes for imaging. Chinese Chemical Letters, 2025, 36(8): 110644-. doi: 10.1016/j.cclet.2024.110644
Qian Pang , Fangjun Huo , Yongkang Yue , Caixia Yin . ONOO− and viscosity dual-response fluorescent probe for arthritis imaging in vivo. Chinese Chemical Letters, 2025, 36(9): 110713-. doi: 10.1016/j.cclet.2024.110713
Can Wang , Zhe Sun , Donghan Ma . Review of imaging buffers used in stochastic optical reconstruction microscopy. Chinese Chemical Letters, 2025, 36(9): 110677-. doi: 10.1016/j.cclet.2024.110677
Botao QU , Qian WANG , Xiaogang NING , Yuxin ZHOU , Ruiping ZHANG . Deeply penetrating photoacoustic imaging in tumor tissues based on dual-targeted melanin nanoparticle. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1025-1032. doi: 10.11862/CJIC.20230416
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Hui-Juan Wang , Wen-Wen Xing , Zhen-Hai Yu , Yong-Xue Li , Heng-Yi Zhang , Qilin Yu , Hongjie Zhu , Yao-Yao Wang , Yu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183
Jingqi Xin , Shupeng Han , Meichen Zheng , Chenfeng Xu , Zhongxi Huang , Bin Wang , Changmin Yu , Feifei An , Yu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165
Yiling Li , Zekun Gao , Xiuxiu Yue , Minhuan Lan , Xiuli Zheng , Benhua Wang , Shuang Zhao , Xiangzhi Song . FRET-based two-photon benzo[a] phenothiazinium photosensitizer for fluorescence imaging-guided photodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109133-. doi: 10.1016/j.cclet.2023.109133
Lijia Xu , Tong Zhong , Wei Zhao , Bing Yao , Lin Ding , Huangxian Ju . Chemoselective labeling-based spermatozoa glycan imaging reveals abnormal glycosylation in oligoasthenotspermia. Chinese Chemical Letters, 2024, 35(4): 108760-. doi: 10.1016/j.cclet.2023.108760
Colour-coded to highlight elements in the periodic table can be used to image trace metals.