Citation: Rui WU, Yankun ZHANG, Jiufu LU, Pengfei ZHANG, Yang WANG. Research process on radioactive 18F-labelled chemical agents as positron emission tomography imaging probes for tumour detection[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(9): 1702-1718. doi: 10.11862/CJIC.20240387 shu

Research process on radioactive 18F-labelled chemical agents as positron emission tomography imaging probes for tumour detection

Figures(6)

  • Malignant tumours always threaten human health. For tumour diagnosis, positron emission tomography (PET) is the most sensitive and advanced imaging technique by radiotracers, such as radioactive 18F, 11C, 64Cu, 68Ga, and 89Zr. Among the radiotracers, the radioactive 18F-labelled chemical agent as PET probes plays a predominant role in monitoring, detecting, treating, and predicting tumours due to its perfect half-life. In this paper, the 18F-labelled chemical materials as PET probes are systematically summarized. First, we introduce various radionuclides of PET and elaborate on the mechanism of PET imaging. It highlights the 18F-labelled chemical agents used as PET probes, including [18F]-2-deoxy-2-[18F]fluoro-D-glucose ([18F]-FDG), 18F-labelled amino acids, 18F-labelled nucleic acids, 18F-labelled receptors, 18F-labelled reporter genes, and 18F-labelled hypoxia agents. In addition, some PET probes with metal as a supplementary element are introduced briefly. Meanwhile, the 18F-labelled nanoparticles for the PET probe and the multi-modality imaging probe are summarized in detail. The approach and strategies for the fabrication of 18F-labelled PET probes are also described briefly. The future development of the PET probe is also prospected. The development and application of 18F-labelled PET probes will expand our knowledge and shed light on the diagnosis and theranostics of tumours.
  • 加载中
    1. [1]

      WU R, TIAN G H, ZHANG S R, ZHANG P F, LEI X Y. A comprehensive review: Versatile imaging probe based on chemical materials for biomedical applications[J]. Appl. Biochem. Biotechnol., 2024, 197: 1301-1328

    2. [2]

      QU B T, WANG Q, NING X G, ZHOU Y X, ZHANG R P. Deeply penetrating photoacoustic imaging in tumor tissues based on dual-targeted melanin nanoparticle[J]. Chinese. J. Inorg. Chem., 2024, 40: 1025-1032

    3. [3]

      VERMEULEN I, ISIN E M, BARTON P, PASTOR B C, HEEREN R M. Multimodal molecular imaging in drug discovery and development[J]. Drug Discov. Today, 2023, 27: 2086-2099

    4. [4]

      YOO S W, KWON S Y, KANG S R, MIN J J. Molecular imaging approaches to facilitate bacteria-mediated cancer therapy[J]. Adv. Drug Deliv. Rev., 2022, 187: 114366

    5. [5]

      VEEN E L, BENSCH F, GLAUDEMANS A W, HOOGE M N, VRIES E G. Molecular imaging to enlighten cancer immunotherapies and underlying involved processes[J]. Cancer Treatment Rev., 2018, 70: 232-244

    6. [6]

      LEEUWEN F W, SCHOTTELIUS M, MOTTAGHY F M, HYAFIL F, LUBBERINK M, MAREK G K, OYEN W J. Perspectives on translational molecular imaging and therapy: An overview of key questions to be addressed[J]. Semin Nucl. Med., 2022, 2: 12-31

    7. [7]

      YILMAZ D, SHARP P S, MAIN M J, SIMPSON P B. Advanced molecular imaging for the characterisation of complex medicines[J]. Drug Discov. Today, 2022, 27: 1716-1723

    8. [8]

      ZHANG S Q, GAO L H, ZHAO H, WANG K Z. pH-sensitive iridium, ruthenium and platinum complexes for tumor-specific fluorescence imaging and cancer therapy[J]. Chinese. J. Inorg. Chem., 2019, 35: 1974-1986

    9. [9]

      COMEAU Z J, LESSARD B H, SHUHENDLER A J. The need to pair molecular monitoring devices with molecular imaging to personalize health[J]. Mol. Imaging. Biol., 2022, 7: 1219-1236

    10. [10]

      LALUMERA E, FANTI S, BONIOLO G. Reliability of molecular imaging diagnostics[J]. Synthese, 2021, 198: 5701-5717

    11. [11]

      ZHENG G, DAI Z F. Molecular imaging[J]. Bioconjugate Chem., 2020, 31(2): 157-158

    12. [12]

      SAITO H, WATANABE H, ONO M. Synthesis and biological evaluation of novel 18F-labeled 2, 4-diaminopyrimidine derivatives for detection of ghrelin receptor in the brain[J]. Bioorg. Med. Chem. Lett., 2024, 99: 129625

    13. [13]

      WANG Z L, ZHU B, JIANG F, CHEN X P, WANG G F, DING N, SONG S L, XU X P, ZHANG W. Design, synthesis and evaluation of novel prostate-specific membrane antigen-targeted aryl [18F]fluorosulfate PET tracers[J]. Bioorg. Med. Chem., 2024, 106: 117753

    14. [14]

      ARIZA M, KOLB H C, MOECHARS D, ROMBOUTS F, ANDRES J L. Tau positron emission tomography (PET) imaging: Past, present, and future[J]. J. Med. Chem., 2018, 10: 232-236

    15. [15]

      GAWNE P J, MAN F, BLOWER P J, ROSALES R T. Direct cell radiolabeling for in vivo cell tracking with PET and SPECT imaging[J]. Chem. Rev., 2022, 122: 10266-10318

    16. [16]

      THOMPSON S, KILBOURN M R, SCOTT P J. Radiochemistry, PET imaging, and the internet of chemical things[J]. ACS Central Sci., 2016, 2: 497-505

    17. [17]

      KEINÄNEN O, BRENNA J M, MEMBRENO R, FUNG K, GANGANGRI K, DAYTS E J, WILLIAMS C J, ZEGLIS B M. Dual radionuclide theranostic pretargeting[J]. Mol. Pharm., 2019, 16: 4416-4421

    18. [18]

      MORADI F, IAGARU A, CONATHY J M. Clinical applications of PET/MR imaging[J]. Radiol. Clin. N. Am., 2021, 59: 853-874

    19. [19]

      BARUCH B S, WERNER R A, SCHUSTER, D M. PET imaging for prostate cancer[J]. Radiol Clin N Am, 2021, 59: 801-811

    20. [20]

      HONG Z Y, YU B, XIAO J C, FENG H Y, MA X W, CHENG Z, BU L H. A convenient and efficient solid phase extraction-based pathway for purification of melanin-targeted probe 18F-P3BZA[J]. Microchem. J., 2021, 164: 106008

    21. [21]

      ZHANG L J, PICóN F R, JIA Y Q, CHEN Y, LI J, HAN C L, ZHUANG X Q, XIA H C. Longitudinal [18F]FDG and [13N]NH3 PET/CT imaging of brain and spinal cord in a canine hemisection spinal cord injury model[J]. NeuroImage-Clin., 2021, 31: 102692

    22. [22]

      LIANG WS, NIE Y, WANG J, WU J, LIU H, WANG Q, HUANG LJ, GUO H, SHU B, LV J. Three-dimensional positron emission tomography/computed tomography analysis of 13NO3- uptake and 13N distribution in growing kohlrabi[J]. Anal. Chem., 2021, 83: 578-584

    23. [23]

      MOEIN M M, TÓTH M, TARI L, VARRONE A, ABDEL-REHIM M, HALLDIN C. New approach in radiometabolite analysis of positron emission tomography (PET) radioligands, lead-shielded microextraction by packed sorbent as a tool for in vivo radiometabolite analysis of [11C]SMW139 in rat plasma[J]. Talanta, 2020, 208: 120449

    24. [24]

      ZHAO A Y, BROOKS A F, RAFFEL D M, STAUFF J, ARTEAGA J, SCOTT P J, SHAO X. Fully automated radiosynthesis of [11C] guanidines for cardiac PET imaging[J]. ACS Med. Chem. Lett., 2020, 11: 2325-2330

    25. [25]

      OKAZAWA H, HIGASHINO Y, TSUJIKAWA T, ARISHIMA H, MORI T, KIYONO Y, KIMURA H, KIKUTA K. Noninvasive method for measurement of cerebral blood flow using O-15 water PET/MRI with ASL correlation[J]. Eur. J. Radiol., 2018, 105: 102-109

    26. [26]

      FAN A P, AN H, MORADI F, ROSENBERG J, ISHII Y, NARIAI T, OKAZAWA H, ZAHARCHUK G. Quantification of brain oxygen extraction and metabolism with [15O]-gas PET: A technical review in the era of PET/MRI[J]. NeuroImage, 2020, 220: 117136

    27. [27]

      BORN D, PEES A, POOT A J, ORRUN R V, WINDHORST A D, VUGTS D J. Fluorine-18 labelled building blocks for PET tracer synthesis[J]. Chem. Soc. Rev., 2017, 46: 4709-4773

    28. [28]

      FU Y X, HELBERT H, SIMETH N A, CRESPI S, SPOELSTRA G B, DIJL J M, OOSTEN M V, NAZARIO L R, BORN D V, LUURTSEMA G, SZYMANSKI, ELSINGA P H, FERINGA B L. Ultrafast photoclick reaction for selective 18F-positron emission tomography tracer synthesis in flow[J]. J. Am. Chem. Soc., 2021, 143: 10041-10047

    29. [29]

      ALLOTT L, ABOAGYE E O. Chemistry considerations for the clinical translation of oncology PET radiopharmaceuticals[J]. Mol. Pharm., 2020, 17: 2245-2259

    30. [30]

      LI Y X, LING Y, PARANjPE M D, GE Q, GU F Y, LI P, YAN S Z, LIU J, WANG X Y, ZHOU Y. Tracer-specific reference tissues selection improves detection of 18F-FDG, 18F-florbetapir, and 18F-flortaucipir PET SUVR changes in Alzheimer′s disease[J]. Hum. Brain Mapp., 2022, 43: 2121-2133

    31. [31]

      YUAN Y, SUN H B, YANG C, YANG H J, PAN L, ZHANG X Y, TIAN R, LI L J, CHEN W, WU X A, WU H X. Difluorocarbene-derived rapid late-stage trifluoromethylation of 5-iodotriazoles for the synthesis of 18F-labeled radiotracers[J]. Chin. Chem. Lett., 2023, 34: 107960

    32. [32]

      MUKAI H, WATANABE Y. Review: PET imaging with macro- and middle-sized molecular probes[J]. Nucl. Med. Biol., 2021, 92: 156-170

    33. [33]

      NIAZ M J, SUN M, SKAFIDA M, NIAZ M O, LVANIDZE J, OSBORNE J R, DWYER E D. Review of commonly used prostate specific PET tracers used in prostate cancer imaging in current clinical practice[J]. Clin. Imaging, 2021, 79: 278-288

    34. [34]

      MASON C, GIMBLET G R, LAPI S E, LEWIS J S. Novel tracers and radionuclides in PET imaging[J]. Radiol. Clin. N. Am., 2021, 59: 887-918

    35. [35]

      MATHAVAN N, KOOPMAN J, RAINA D B, TURKIEWICZ A, TAGIL M, ISAKSSON H. 18F-fluoride as a prognostic indicator of bone regeneration[J]. Acta Biomater., 2019, 90: 403-411

    36. [36]

      KAHLE X U, JESUS F M, GLAUDEMANS A W, HOOGE M N, SMIT A J, PLATTEL W J, MEERTEN T V, DIEOSTRA A, BERG A V, KWEE T C, NOORDZIJ W, VRIES E G, NIjLAND M. Molecular imaging in lymphoma beyond 18F-FDG-PET: Understanding the biology and its implications for diagnostics and therapy[J]. Lancet Haematol., 2020, 7: 479-489

    37. [37]

      DEJANOVIC D, SPECHT L, CZYZEWSKA D, BERTHELSEN A K, LOFT A. Response evaluation following radiation therapy with 18F-FDG PET/CT: Common variants of radiation-induced changes and potential pitfalls[J]. Semin. Nucl. Med., 2022, 52: 681-686

    38. [38]

      HOVHANNISYAN N, DHILLY M, GUILLOUET S, LEPORRIER M, BARRE L. Comparative analysis between [18F]Fludarabine-PET and [18F]FDG-PET in a murine model of inflammation[J]. Mol. Pharm., 2016, 13: 2136-2139

    39. [39]

      LIU W, TRUILLET C, FLAVELL R R, BREWER T F, EVANS M J, WILSON D M, CHANG D M. A reactivity-based [18F]FDG probe for in vivo formaldehyde imaging using positron emission tomography[J]. Chem. Sci., 2016, 7: 5503-5507

    40. [40]

      FLAVELL R R, TRUILLET C, REGAN M K, GANGULY T, BLECHA J E, KURHANEWICZ J, VANBROCKLIN H F, KESHARI K R, CHANG C J, EVANS M J, WILSON D M. Caged [18F]FDG glycosylamines for imaging acidic tumor microenvironments using positron emission tomography[J]. Bioconjugate Chem., 2016, 27: 170-178

    41. [41]

      BÖHMER V I, SZYMANSKI W, FERINGA B L, ELSINGA P H. Multivalent probes in molecular imaging[J]. Trend Mol. Med., 2021, 27: 379-393

    42. [42]

      PRETZE M, NEUBER C, KINSKI E, BELTER B, KöCKERLING M, CAFLISCH A, STEINBACH J, PIETZSCH J, MAMAT C. Synthesis, radiolabelling and initial biological characterisation of 18F-labelled xanthine derivatives for PET imaging of Eph receptors[J]. Org. Biomol. Chem., 2020, 18: 3104-3116

    43. [43]

      LIU W, TRUILLET C, FLAVELL R R, BREWER T F, EVANS M J, WILSON D M, CHANG C J. A reactivity-based [18F]FDG probe for in vivo formaldehyde imaging using positron emission tomography[J]. Chem. Sci., 2016, 7: 5503-5507

    44. [44]

      LAUDICELLA R, QUARTUCCIO N, ARGIROFFI G, ALONGI P, BARATTO L, CALIFARETTI V, FRANTELLIZZI V, VINCENTIS G D, SOLE A D, EVANGELISTA L, BALDARI S, BISDAS S, CECI F, LAGARU A. Unconventional non-amino acidic PET radiotracers for molecular imaging in gliomas[J]. Eur. J. Nucl. Med. Mol. I., 2021, 49: 2104-2113

    45. [45]

      VERGER A, STEGMAYR C, GALLDIKS N, GUCHT A V, LOHMANN P, STOFFELS G, SHAH N J, FINK G R, EICKHOFF S B, GUEDJ E, LANGEN K J. Evaluation of factors influencing 18F-FET uptake in the brain[J]. NeuroImage‒Clin., 2018, 17: 491-497

    46. [46]

      ALLOTT L, BARNES C, BRICKUTE D, ABOAGYE E O. An improved automated radiosynthesis of [18F]FET-βAG-TOCA[J]. React. Chem. Eng., 2019, 4: 569-474

    47. [47]

      SHI D Z, DONG Y, ZHOU W L, BAI L, HUANG J, HAN Y J, SUN P H, HUANG Y C, HUANG Y, CHEN L, CAO M, WU H, HUANG S. Pharmacokinetic analysis of 6-O-[18F]FEE for PET imaging of EGFR mutation[J]. Bioorgan. Med. Chem., 2023, 85: 129217

    48. [48]

      NAGACHINTA S, DAMMICCO D, JOYARD Y, MAINDRON N, RISS P. P-154: Automated radiosynthesis of [18F]DOPA and [18F]FMT via copper-mediated nucleophilic F-18 fluorination of arylstannanes on a new synthesizer[J]. Nucl. Med. Biol., 2022, 108: S133-S144

    49. [49]

      VUS S, MODEMANN D, URUSOVA E, ERMERT J, ENDEPOLS H, ZLATOPOLSKIY B, NEUMAIER B. SP-008: 5-[18F]Fluoro-m-tyrosine (5-[18F]FMT)-a novel promising tracer for dopaminergic imaging[J]. Nucl. Med. Biol., 2021, 96: 38-97

    50. [50]

      VERGER A, KAS A, GUEDj E. Joint SFMN/ANOCEF focus on 18F-FDOPA PET imaging in glioma: Current applications and perspectives[J]. Med. Nucl., 2020, 44: 164-171

    51. [51]

      VERSEL J L, EISENBERG D P, MARENCO S, KOHN P D, GREGORY M D, GZARAPATA J B, BERMAN K F. P564: Frontostriatal neurochemical profiling of the healthy human brain using magnetic resonance spectroscopy and [18F]-FDOPA positron emission tomography[J]. Biol. Psychiat., 2022, 91: S317

    52. [52]

      PICKEL T C, VOLL R J, YU W, WANG Z B, NYE J A, BACSA J, OLSON J J, LIEBESKIND S, GOODMAN M M. Synthesis, radiolabeling, and biological evaluation of the cis stereoisomers of 1-amino-3-fluoro-4-(fluoro-18F)cyclopentane-1-carboxylic acid as PET imaging agents[J]. J. Med. Chem., 2020, 63: 12008-12022

    53. [53]

      CESARIA M, ARIMA V, RELLA S, MALITESTA C, MARTUCCI M C, MANERA M G, TOLOMEO A, SCILIMATI A, RELLA R. [18F]F-DOPA synthesis by poly(dimethylsiloxane)-based platforms: Thermal aging protocol to reduce chemicals-induced damage[J]. Sensor Actuator B‒Chem., 2018, 254: 143-152

    54. [54]

      PICKEL T C, PASHIKANTI G, VOLL R J, YU W P, ZHANG Z, NYE J A, BACSA J, OLSON J J, LIEBESKIND L S, GOODMAN M M. Synthesis, radiolabeling, and biological evaluation of the trans-stereoisomers of 1-amino-3-(fluoro-18F)-4-fluorocyclopentane-1-carboxylic acid as PET imaging agents[J]. ACS Pharmacol. Transl. Sci., 2021, 4: 1195-1203

    55. [55]

      YANG Y, XU S T, GAI Y L, ZHANG B, CHEN L. Recent progresses in lanthanide metal-organic frameworks (Ln-MOFs) as chemical sensors for ions, antibiotics and amino acids[J]. Chin. J. Struct. Chem., 2022, 41: 2211045-2211070

    56. [56]

      GOURAND F, PATIN D, HENRY A, LBAZIZENE M, DHILLY M, FILLESOYE F, TIREL O, TINATAS M L, PAPAMICEL C, LEVACHER V, BARRE L. Chemical delivery system of MIBG to the central nervous system: Synthesis, 11C-radiosynthesis, and in vivo evaluation[J]. ACS Med. Chem. Lett., 2019, 10: 352-357

    57. [57]

      KING A, DOEPNER A, TURTON D, CIOBOTA D M, PIEVE C D, FONG A C, MAREK G K, CHUNG Y L, SMITH G. Radiosynthesis of the anticancer nucleoside analogue trifluridine using an automated 18F-trifluoromethylation procedure[J]. Org. Biomol. Chem., 2018, 16: 2986-2996

    58. [58]

      BRICKUTE D, BECKLEY A, ALLOTT L, BRAGA M, BARNES C, THORLEY K J, ABOAGYE E O. Synthesis and evaluation of 3′-[18F] fluorothymidine-5′-squaryl as a bioisostere of 3′-[18F] fluorothymidine-5′-monophosphate[J]. RSC Adv., 2021, 11: 12423-12433

    59. [59]

      LI J D, VALKENBURGH J V, CONTI P S, CHEN K. Exploring solvent effects in the radiosynthesis of 18F-labeled thymidine analogues toward clinical translation for positron emission tomography imaging[J]. ACS Pharmacol Transl. Sci., 2021, 4: 266-275

    60. [60]

      ZADEH A S, REZAEYAN A, SARIKHANI A, GHAFFARI H, SAMADIAN H, KYADEMI S, GHAZNAVI H, BULTE J W. Folate receptor-targeted nanoprobes for molecular imaging of cancer[J]. Nano Today, 2021, 39: 101173

    61. [61]

      FAHEEM S, RIZVI A, ZHANG H X. Emerging trends of receptor-mediated tumor targeting peptides: A review with perspective from molecular imaging modalities[J]. Eur. J. Med. Chem., 2021, 221: 113538

    62. [62]

      DOOT R K, DUBROFF J G, LABBAN K J, MACH R H. Selectivity of probes for PET imaging of dopamine D3 receptors[J]. Neurosci Lett., 2018, 691: 18-25

    63. [63]

      SYVäNEN S, FANG X T, FARESjö R, ROKKA J, LANNFELT L, OLBERG D E, ERIKSSON J, SEHLIN D. Fluorine-18-labeled antibody ligands for PET imaging of amyloid-β in brain[J]. ACS Chem. Neurosci., 2022, 11: 446-448

    64. [64]

      SCHMITTHENNER H F, BARRETT T M, BEACH S A, HEESE L E, WEIDMAN C, DOBSON D E, MAHONEY E R, SCHUG N C, JONES K G, DURMAZ C, OTASOWIE O, ARONOW S, LEE Y P, OPHARDT H D, BECKER A E, HORNAK J P, EVANS L M, FERRAN M C. Modular synthesis of peptide-based single- and multimodal targeted molecular imaging agents[J]. ACS Appl. Bio. Mater., 2021, 4: 5435-5448

    65. [65]

      PEES A, VASDEV N. A one-pot radiosynthesis of [18F]FMPEP-d2 for imaging the cannabinoid receptor 1[J]. J. Fluorine. Chem., 2023, 272: 110194

    66. [66]

      LIN Y X, LIU J F, BAI R, SHI J M, ZHU X M, LIU J, GUO J, ZHANG W, LIU H, LIU Z Q. Mitochondria-inspired nanoparticles with microenvironment-adapting capacities for on-demand drug delivery after ischemic injury[J]. ACS Nano, 2020, 14: 11846-11859

    67. [67]

      LI K X, SUN H Z, LU Z M, XIN J, ZHANG L, GUO Y, GUO Q Y. Value of [18F]FDG PET radiomic features and VEGF expression in predicting pelvic lymphatic metastasis and their potential relationship in early-stage cervical squamous cell carcinoma[J]. Eur. J. Radiol., 2018, 106: 160-166

    68. [68]

      YANG L L, LIU S S, CHU J J, MIAO S, WANG K, ZHANG Q W, WANG Y Y, XIAO Y D, WU L, LIU Y, YU L J, YU C H, LIU X, KE M X, CHENG Z, SUN X L. Novel anilino quinazoline-based EGFR tyrosine kinase inhibitors for treatment of non-small cell lung cancer. Biomater[J]. Science, 2021, 92: 443-455

    69. [69]

      KIMURA H, OKUDA H, ISHIGURO M, ARIMITSU K, MAKINO A, NISHII R, MIYAZAKI A, YAGI Y, WATANABE H, KAWASAKI I, ONO M, SAJI H. 18F-labeled pyrido[3, 4-d]pyrimidine as an effective probe for imaging of L858R mutant epidermal growth factor receptor[J]. ACS Med. Chem. Lett., 2017, 8: 418-422

    70. [70]

      SHI X D, GAO K, HUANG H, GAO R. Pretargeted immuno-PET based on bioorthogonal chemistry for imaging EGFR positive colorectal cancer[J]. Bioconjugate Chem., 2018, 29: 250-254

    71. [71]

      SU X H, CHENG K, JEON J, SHEN B, VENTURIN G T, HU X, RAO J H, CHIN F T, WU H, CHENG Z. Comparison of two site-specifically 18F-labeled affibodies for PET imaging of EGFR positive tumors[J]. Mol Pharm., 2014, 11: 3947-3956

    72. [72]

      MASCHAUER S, HEILMANN M, WäNGLER C, SCHIRRMACHER R, PRANTE O. Radiosynthesis and preclinical evaluation of 18F-fluoroglycosylated octreotate for somatostatin receptor imaging[J]. Bioconjugate Chem., 2016, 27: 2707-2714

    73. [73]

      SEULKI L, XIE J, CHEN X Y. Peptides and peptide hormones for molecular imaging and disease diagnosis[J]. Chem. Rev., 2010, 110: 3087-3111

    74. [74]

      RICHTER S, WUEST M, BERGMAN C N, WAY J D, KRIEGER S H, ROGERS S, WUEST F. Rerouting the metabolic pathway of 18F-labeled peptides: The influence of prosthetic groups[J]. Bioconjugate Chem., 2015, 26: 201-212

    75. [75]

      KIM H L, SACHIN K, JEONG H J, CHOI W S, LEE H S, KIM D W. F-18 labeled RGD probes based on bioorthogonal strain-promoted click reaction for PET imaging[J]. ACS Med Chem. Lett., 2015, 6: 402-407

    76. [76]

      LIU S. Radiolabeled cyclic RGD peptide bioconjugates as radiotracers targeting multiple integrins[J]. Bioconjugate Chem., 2015, 26: 1413-1438

    77. [77]

      YAO L, LI Y, CHEN H J, WEN X J, PANG Y Z, CHEN Z J, GUO Z D, ZHANG X Z, WU H, GUO W. Dual targeting of integrin αvβ3 and neuropilin-1 receptors improves micropositron emission tomography imaging of breast cancer[J]. Mol. Pharm., 2022, 19: 1458-1467

    78. [78]

      ZHANG Q Y, LIANG J Y, YUN S L, LIANG K, YANG D Y, GU Z. Recent advances in improving tumor-targeted delivery of imaging nanoprobes[J]. Biomater. Sci., 2020, 8: 4129-4146

    79. [79]

      THOMPSON S, FLEMING I N, HAGANAND O D. Enzymatic transhalogenation of dendritic RGD peptide constructs with the fluorinase[J]. Org. Biomol. Chem., 2016, 14: 3120-3129

    80. [80]

      RAJALA N, KERMINEN E K, SALO S A, VAKIPARTA M J J, KIRJAVAINEN A. Automated cassette based synthesis of novel CB1 receptor tracer [18F]FPATPP produced via Ru-mediated 18F-fluorination[J]. Nucl. Med. Biol., 2023, 126: 108469

    81. [81]

      ZHUANG X Q, KUNNAS J, SRINIVASARAO M, LOW P, KNUUTI J, SARASTE A, PHILIPPE C, ROIVAINEN A, LI X G. Efficient radiosynthesis of a new folate receptor-targeting PET tracer, [18F]fluoronicotinic acid labeled folate, for imaging lung fibrosis[J]. Nucl. Med. Biol., 2023, 126: 108498

    82. [82]

      FUjINAGA M, OHKUBO T, SHIMOjO M, NAGAI Y, ONO M, MATSUSHITA Y. Development of a novel positron emission tomography probe deuterated [18F]FE-TMP ([18F]FE-TMP-d4), an antagonist of escherichia coli dihydrofolate reductase, for reporter gene imaging of the brain[J]. J. M. Chem, 2025, 68: 12733-12744

    83. [83]

      WANG X Y, RONG G Y, YAN J J, PAN D H, WANG L Z, XU Y P, YANG M, CHENG Y Y. In vivo tracking of fluorinated polypeptide gene carriers by positron emission tomography imaging[J]. ACS Appl. Mater. Interfaces, 2020, 12: 45763-45771

    84. [84]

      BAI P, LAN Y, WANG H, LIU Y, STRIAR R, YUAN G Y, AFSHAR S, ZAGAROLI J S, TOCCI D R, LANGAN A G, WANG C N. Synthesis and characterization of a positron emission tomography imaging probe selectively targeting the second bromodomain of bromodomain protein BRD4[J]. Bioconjugate Chem., 2021, 32: 1711-1718

    85. [85]

      GREGORY D B, SOPHIE S, GINA D, SABRINA H, ELENA K, MARTIN S, BETTINA W, KRISTINA H, BERND J P, ANDREAS M. [18F]pFBC, a covalent CLIP-tag radiotracer for detection of viral reporter gene transfer in the murine brain[J]. Bioconjugate Chem., 2024, 35: 254-264

    86. [86]

      OKKELS N, HORSAGER J, ESPINOSA M A L, HANSEN F O, ANDERSEN K B, JUST M K, FEDOROVA T D, SKJABAEK C, MUNK O L, HANSEN K V, GOTTRUP H, HANSEN A K, GROTHE M J, BORGHAMMER P. Distribution of cholinergic nerve terminals in the aged human brain measured with [18F]FEOBV PET and its correlation with histological data[J]. NeuroImage, 2023, 269: 119908

    87. [87]

      SHEN J J, ZHANG W L, HE Y N. AIEgen-terminated charge-switchable zwitterionic azo polymer for tumor hypoxia imaging[J]. ACS Appl. Poly. Mater., 2022, 4: 6659-6666

    88. [88]

      HUANG L, LI Z J, ZHANG X Z. Radiotracers for nuclear imaging of reactive oxygen species: Advances made so far[J]. Bioconjugate Chem., 2020, 33: 749-766

    89. [89]

      WILLIAMS E M, RICH M H, MOWDAY A M, ASHOORZADEH A, COPP J N, GUISE C P, ANDERSON R F, FLANAGAN J U, SMAILL J B, PATTERSON A V, ACKERLEY D F. Engineering escherichia coli NfsB to activate a hypoxia-resistant analogue of the PET probe EF5 to enable non-invasive imaging during enzyme prodrug therapy[J]. Biochemistry, 2019, 58: 3700-3710

    90. [90]

      SANDULEANU S, HAMMING-VRIEZE O, WESSELINGe F W R, EVEN A J, HOEBERS F J, HOEBEN A, VOGEL W V, TESSELAAR M E, PARVIN D, BARTELINK H, LAMBIN P. [18F]-HX4 PET/CT hypoxia in patients with squamous cell carcinoma of the head and neck treated with chemoradiotherapy: Prognostic results from two prospective trials[J]. Clin. Transl. Rad. Onco., 2022, 23: 9-15

    91. [91]

      RIHAN K M D, MARC S M D. PET imaging of tumour hypoxia in head and neck cancer: A primer for neuroradiologists[J]. Neuroimaging Clin. N. Am., 2020, 30: 325-339

    92. [92]

      HE H Z, ZHANG X D, DU L H, YE M W, LU Y L, XUE J J, WU J, SHUAI X T. Molecular imaging nanoprobes for theranostic applications[J]. Adv. Drug Deliv. Rev., 2021, 186: 114320

    93. [93]

      YANG E P, LIU Q F, HUANG G, LIU J J, WEI W J. Engineering nanobodies for next-generation molecular imaging[J]. Drug Discov. Today, 2022, 227: 1622-1638

    94. [94]

      LI J J, CHENG F F, HUANG H P, LI L L, ZHU J J. Nanomaterial-based activatable imaging probes: From design to biological applications[J]. Chem. Soc. Rev., 2015, 44: 7855-7880

    95. [95]

      SUN X L, CAI W B, CHEN X Y. Positron emission tomography maging using radiolabeled inorganic nanomaterials[J]. Accounts Chem. Res., 2015, 48: 286-294

    96. [96]

      SMITH B R, GAMBHIR S S. Nanomaterials for in vivo imaging[J]. Chem. Rev., 2017, 117: 901-986

    97. [97]

      ZHANG X, ZHOU j, GU Z W, ZHANG H, GONG Q Y, LUO K. Advances in nanomedicines for diagnosis of central nervous system disorders[J]. Biomaterials, 2020, 269: 120492

    98. [98]

      FAN W P, YUNG B Y, HUANG P, CHEN X Y. Nanotechnology for multimodal synergistic cancer therapy[J]. Chem. Rev., 2022, 22: 13566-13638

    99. [99]

      KIM D, KIM J, PARK Y, LEE N, HYEON T. Recent development of inorganic nanoparticles for biomedical imaging[J]. ACS Central. Sci., 2018, 4: 324-336

    100. [100]

      BOUCHé M, HSU J C, YUXI C. DONG Y C, KIM J, TAING K, CORMODE D P. Recent advances in molecular imaging gold nanoparticles[J]. Bioconjugate Chem., 2020, 31: 303-314

    101. [101]

      MAURO P P, GóMEZ-VALLEjO V, MALDONADO Z B, ROIG J L, BORRóS S. Novel 18F labeling strategy for polyester-based NPs for in vivo PET-CT imaging[J]. Bioconjugate Chem., 2015, 26: 582-592

    102. [102]

      PELLICO J, GAWNE P J, ROSALES R T. Radiolabelling of nanomaterials for medical imaging and therapy[J]. Chem Soc. Rev., 2021, 50: 3355-3423

    103. [103]

      WU R, LU J F, SONG J, LIU C F, ZHANG Q, TIAN G H. Hydroxyapatite loaded radiolabeled 18F as molecular imaging nanoprobe for biomedical application[J]. Chinese. J. Inorg. Chem., 2019, 35: 891-900

    104. [104]

      BOROS E, PACKARD A B. Radioactive transition metals for imaging and therapy[J]. Chem. Rev., 2019, 119: 870-901

    105. [105]

      GE J X, CHEN L, HUANG B X, GAO Y, ZHOU D D, ZHOU Y, CHEN C, WEN L, LI Q, ZENG J F, ZHONG Z Y, GAO M Y. Anchoring group-mediated radiolabeling of inorganic nanoparticles-A universal method for constructing nuclear medicine imaging nanoprobes[J]. ACS Appl. Mater. Interfaces., 2020, 14: 8838-8846

    106. [106]

      SHABBIR R, MINGARELLI M, CABELLO G, HERK M V, CHOUDHURY A, SMITH M A. EGFR targeting of [177Lu] gold nanoparticles to colorectal and breast tumour cells: Affinity, duration of binding and growth inhibition of Cetuximab-resistant cells[J]. J. King Saud. Univ. Sci., 2021, 33: 101573

    107. [107]

      TAMARIT F C, BARYZEWSKA A, LLEDOS M, PASCU S I. Zirconium-89 radio-nanochemistry and its applications towards the bioimaging of prostate cancer[J]. Inorg. Chim. Acta, 2021, 496: 119041

    108. [108]

      BLOWER P J, LEVASON W, LUTHRA S K, MCROBBIE G, MONZITTU F M, MULES T O, REID G, SUBHAN M N. Exploring transition metal fluoride chelates-synthesis, properties and prospects towards potential PET probes[J]. Dalton Trans., 2019, 48: 6767-6776

    109. [109]

      SELVAN S T, RAVICHANDAR R, GHOSH K K, MOHAN A, MAHALAKSHMI P, GULYáS B, PADMANABHAN P. Coordination chemistry of ligands: Insights into the design of amyloid beta/tau-PET imaging probes and nanoparticles-based therapies for Alzheimer′s disease[J]. Coord. Chem. Rev., 2020, 430: 213659

    110. [110]

      FIRTH G, BLOWER J E, BARTNICKA J J. Non-invasive radionuclide imaging of trace metal trafficking in health and disease: "PET metallomics"[J]. RSC Chem. Biol., 2022, 3: 495-518

    111. [111]

      ZACHERL M J, TODICA A, WANGLER C, SCHIRRMACHER R, HAJEBRAHIMI M A, PIRCHER J, LI X, LINDER S, BRENDEL M, BARTENSTEIN P, MASSBERG S, BRUNNER S, LEHNER S, HACKER M, HUBER B C. Molecular imaging of cardiac CXCR4 expression in a mouse model of acute myocardial infarction using a novel 68Ga-mCXCL12 PET tracer[J]. J. Nuc. Cardiol., 2021, 28: 2965-2975

    112. [112]

      TAUBEL J C, NELSON N R, BANSAL A, CURRAN G L, WANG L, WANG Z T, BERG H M, VERNON C J, MIN H K, LARSON N B, DEGRADO T R, KANDIMALLA K K, LOWE V J, PANDEY M K. Design, synthesis, and preliminary evaluation of [68Ga]Ga-NOTA-insulin as a PET probe in an alzheimer′s disease mouse model[J]. Bioconjugate Chem., 2022, 33: 892-906

    113. [113]

      JOAQUI M A, PANDEY M K, BANSAL A, RAJU R, PAVLIK F A, DUNDAR A, WONG H L, DEGRADO T R, PIERRE V C. Catechol-based functionalizable ligands for gallium-68 positron emission tomography imaging[J]. Inorg. Chem., 2022, 59: 12025-12038

    114. [114]

      YAP S Y, PRICE T W, SAVOIE, H, BOYLE R W, STASIUK G J. Selective radiolabelling with 68Ga under mild conditions: A route towards a porphyrin PET/PDT theranostic agent[J]. Chem. Commun., 2018, 54: 7952-7954

    115. [115]

      GIL J H, BRAGA M, HARRISS BI, CARROL L S, LEOW C H, TANG M X, ABOAGYE E O, LONG N J. Development of 68Ga-labelled ultrasound microbubbles for whole-body PET imaging[J]. Chem. Sci., 2019, 10: 5603-5615

    116. [116]

      WU R, LIU S, LIU Y J, SUN Y L, XIAO H, HUANG Y, YANG Z, WU Z H. PET probe with aggregation induced emission characteristics for the specific turn-on of aromatase[J]. Talanta, 2020, 208: 120412

    117. [117]

      SZABÓ J P, CSIGE K, SZABÓ I K, ARATÓ V, OPPOSITS G, JÓSZAI I, KERTÉSZ I, KÉPES Z, MÉHES G, FENYVESI F, HAJDU I, TRENCSÉNYI G. In vivo assessment of tumor targeting potential of 68Ga-labelled randomly methylated beta-cyclodextrin (RAMEB) and 2-hydroxypropyl-β-cyclodextrin (HPβCD) using positron emission tomography[J]. Int. J. Pharm., 2022, 630: 122462

    118. [118]

      GIZAWY A M, ABDELMONEM I M, ELSHARMA E M, EMARA A M. Separation of 64+67Cu(Ⅱ) from irradiated natural zinc target by sodium alginate-polyacrylic acid/nanohalloysite composite[J]. Microchem. J., 2023, 191: 108769

    119. [119]

      BARTNICKA J J, AL-SALEMEE F, FIRTH G, BLOWER P J. L-cysteine-mediated modulation of copper trafficking in prostate cancer cells: An in vitro and in vivo investigation with 64Cu and 64Cu-PET[J]. Metallomics, 2020, 12: 1508-1520

    120. [120]

      HUANG Y R, CHO H J, BANDARA N, SUN L, TRAN D, ROGERS B E, MIRICA L M. Metal-chelating benzothiazole multifunctional compounds for the modulation and 64Cu PET imaging of Aβ aggregation[J]. Chem. Sci., 2022, 11: 7789-7799

    121. [121]

      WANG Y J, HUYNH T T, BANDARA N, CHO H J, ROGERS B E, MIRICA L M. 2-(4-Hydroxyphenyl)benzothiazole dicarboxylate ester TACN chelators for 64Cu PET imaging in Alzheimer′s disease[J]. Dalton Trans., 2022, 51: 1216-1224

    122. [122]

      MA W H, FU F F, ZHU Y J, HUANG R, ZHU Y Z, LIU Z W, WANG J, CONTI P S, SHI X Y, CHEN K. 64Cu-labeled multifunctional dendrimers for targeted tumor PET imaging[J]. Nanoscale, 2018, 10: 6113-6124

    123. [123]

      COLLIGNON A M, LESIEUR J, ANIZAN N, AZZOUNA R B, POLIARD A, GORIN C, LETOURNEUR D, CHAUSSAIN C, ROUZET F, ROCHEFORT G Y. Early angiogenesis detected by PET imaging with 64Cu-NODAGA-RGD is predictive of bone critical defect repair[J]. Acta Biomater., 2018, 82: 111-121

    124. [124]

      KAMA D V, FREI A, BRINK A, BRABAND H, ALBERTO R, ROODT A. New approach for the synthesis of water soluble fac-[MI(CO)3]+ bis(diarylphosphino)alkylamine complexes (M=99Tc, Re)[J]. Dalton Trans., 2021, 50: 17506-17514

    125. [125]

      CAO T Y, ZHOU X B, ZHENG Y Y, SUN Y Y, ZHANG J, CHEN W, ZHANG J P, ZHOU Z G, YANG S P, ZHANG Y G, YANG H, WANG M W. Chelator-free conjugation of 99mTc and Gd3+ to PEGylated nanographene oxide for dual-modality SPECT/MR imaging of lymph nodes[J]. ACS Appl. Mater. Interfaces, 2017, 9: 42612-42621

    126. [126]

      URBANO N, SCIMECA M, TANCREDI V, BONANNO E, SCHILLACI, O. 99mTC-sestamibi breast imaging: Current status, new ideas and future perspectives[J]. Semin. Cancer Biol., 2020, 84: 302-309

    127. [127]

      ZHANG M L, LI S F, ZHANG H, XU H W. Research progress of 18F labeled small molecule positron emission tomography (PET) imaging agents[J]. Eur. J. Med. Chem., 2020, 205: 112629

    128. [128]

      AKBARI B, HUBER B R, SHERMAN J H. Unlocking the hidden depths: Multi-modal integration of imaging mass spectrometry-based and molecular imaging techniques[J]. Crit. Rev. Anal. Chem., 2023, 307: 1-30

    129. [129]

      SHEIKHBAHAEI S, MENA E, PATTANAYAK P, TAGHIPOUR M, SOLNES L B, SUBRAMANIAM R M. Molecular imaging and precision medicine: PET/computed tomography and therapy response assessment in nncology[J]. PET Clinics., 2017, 12: 105-118

    130. [130]

      PRODI L, RAMPAZZO E, RASTRELLI F, SPEGHINI A, ZACCHERONI N. Imaging agents based on lanthanide doped nanoparticles[J]. Chem. Soc. Rev., 2015, 44: 4922-4952

    131. [131]

      SCHÜTZ M B, RENNER A M, LLYASL S, LE K, GULIYEV M, KRAPF P, NEUMAIER B, MATHUR S. 18F-labeled magnetic nanovectors for bimodal cellular imaging[J]. Biomater. Sci., 2021, 9: 4717-4727

    132. [132]

      WANG D, ASTRUC D. The recent development of efficient earth-abundant transition-metal nanocatalysts[J]. Chem. Soc. Rev., 2017, 46: 816-854

    133. [133]

      LI Y H, LIU J, QIN X J, DENG Y, ZHANG J P, SUN Y. Ultrafast synthesis of fluorine-18 doped bismuth based upconversion nanophosphors for tri-modal CT/PET/UCL imaging in vivo[J]. Chem. Commun., 2019, 50: 7259-7262

    134. [134]

      GULZAR A, XU J T, YANG P P, HE F, XU L G. Upconversion processes: Versatile biological applications and biosafety[J]. Nanoscale, 2017, 9: 12248-12282

    135. [135]

      CUI X, GREEN M A, BLOWER P J, ZHOU D, YAN Y, ZHANG W, DJANASHVILI K, MATHE D, VERES D S, SZIGETI K. Al(OH)3 facilitated synthesis of water-soluble, magnetic, radiolabelled and fluorescent hydroxyapatite nanoparticles[J]. Chem. Commun., 2015, 45: 9332-9335

    136. [136]

      SUN Z Y, CHENG K, WU F Y, LIU H G, MA X W, SU X H, LIU Y, XIA L M, CHENG Z. Robust surface coating for a fast, facile fluorine-18 labeling of iron oxide nanoparticles for PET/MR dual-modality imaging[J]. Nanoscale., 2016, 8: 19644-19653

    137. [137]

      ESFAHANI S A, TORRADO C A, AMORIM B J, GROSHAR D, DOMACHEVSKY L, BERNSTINE H, STEIN D, GERVAIS D, CATALANO O A. PET/MRI and PET/CT radiomics in primary cervical cancer: A pilot study on the correlation of pelvic PET, MRI, and CT derived image features[J]. Mol. Imaging. Biol., 2022, 24: 60-69

    138. [138]

      WANG Y H, SONG S Y, ZHANG S T, ZHANG H G. Stimuli-responsive nanotheranostics based on lanthanide-doped upconversion nanoparticles for cancer imaging and therapy: Current advances and future challenges[J]. Nanotoday, 2019, 25: 38-67

    139. [139]

      HENDRIS W, RYUICHI H, SHOZO F. Current progress and future directions in non-alzheimer′s disease tau PET tracers[J]. ACS Chem. Neurosci., 2025, 16: 111-127

    140. [140]

      CHANSAENPAK K, WANG M Z, WU Z H, ZAMAN R, LI Z B, GABBAI F P. [18F]-NHC-BF3 adducts as water stable radio-prosthetic groups for PET imaging[J]. Chem. Commun., 2015, 51: 12439-12442

    141. [141]

      JACOBSON O, KIESEWETTER D O, CHEN X Y. Fluorine-18  radiochemistry, labeling strategies and synthetic routes[J]. Bioconjugate Chem., 2015, 26: 1-18

    142. [142]

      WANG T, LV S J, MOU Z B, ZHANG Z R, DONG T T, LI Z J. Isotope exchange-based 18F-labeling methods[J]. Bioconjugate Chem., 2023, 34: 140-161

    143. [143]

      YU Q, ZHOU D L, MA J J, SONG C L. Decarboxylative nucleophilic fluorination of aliphatic carboxylic acids[J]. Org. Lett., 2024, 26: 4257-4261

    144. [144]

      PRESHLOCK S, TREDWELL M, GOUVERNEUR V. 18F-labeling of arenes and heteroarenes for applications in positron emission tomography[J]. Chem. Rev., 2016, 116: 719-766

    145. [145]

      KUMAR K, GHOSH A. 18F-AlF labeled peptide and protein conjugates as positron emission tomography imaging pharmaceuticals[J]. Bioconjugate Chem., 2018, 29: 953-975

    146. [146]

      WU D, YANG K K, ZHANG Z K, FENG Y X, RAO L, CHEN X Y, YU G C. Metal-free bioorthogonal click chemistry in cancer theranostics[J]. Chem. Soc. Rev., 2022, 51: 1336-1376

    147. [147]

      ALLOTT L, AMGHEIB A, BARNES C, BRAGA M, BRICKUTE D, WANG N, FU R, MAGHAMI S G, ABOAGYE E O. Radiolabelling an 18F biologic via facile IEDDA "click" chemistry on the GE FASTLab™ platform[J]. React. Chem. Eng., 2021, 6: 1070-1078

    148. [148]

      LIU X H, HUAN C Y, ZHANG X F, ZHANG W. Difluorocarbene-enabled synthesis of 18F-radiotracers in positron emission tomography[J]. J. Fluorine. Chem., 2024, 274: 110253

    149. [149]

      DENG X Y, ZHU X H. Recent advances of S-18F radiochemistry for positron emission tomography[J]. ACS Omega, 2023, 8: 37720-37730

  • 加载中
    1. [1]

      Jing-Jing ZhangLujun LouRui LvJiahui ChenYinlong LiGuangwei WuLingchao CaiSteven H. LiangZhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342

    2. [2]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    3. [3]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    4. [4]

      Lingjun ShaBing BoJiayu LiQi LiuYa CaoJing Zhao . Precise assessment of lung cancer-derived exosomes based on dual-labelled membrane interface. Chinese Chemical Letters, 2025, 36(4): 110109-. doi: 10.1016/j.cclet.2024.110109

    5. [5]

      Xiaosheng ZhaoJie GaoKun ShiChixiang ZhangWenliang MaGuo LyuJun ZhangJing LuQiangqiang LiuXianjin LuoKunru YuJianguo LiQiang GeJiming CaiChang LiuZhiyong Qian . A new radioactive microsphere: Y-90 carbon microsphere for selective internal radiation therapy of advanced liver cancer. Chinese Chemical Letters, 2025, 36(8): 110662-. doi: 10.1016/j.cclet.2024.110662

    6. [6]

      Yang LiYihan ChenJiaxin LuoQihuan LiYiwu QuanYixiang Cheng . Enhanced circularly polarized luminescence emission promoted by achiral dichroic oligomers of F8BT in cholesteric liquid crystal. Chinese Chemical Letters, 2024, 35(11): 109864-. doi: 10.1016/j.cclet.2024.109864

    7. [7]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    8. [8]

      Xiaohong WenMei YangLie LiMingmin HuangWei CuiSuping LiHaiyan ChenChen LiQiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291

    9. [9]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    10. [10]

      Zhihui ZhangRu SunChong BianHongbo WangZhen ZhaoPanpan LvJianzhong LuHaixin ZhangHulie ZengYuanyuan ChenZhijuan Cao . A dual-protease-triggered chemiluminescent probe for precise tumor imaging. Chinese Chemical Letters, 2025, 36(2): 109784-. doi: 10.1016/j.cclet.2024.109784

    11. [11]

      Tianyu SunZhoujun DongPaul Michael MaluguluTengfei ZhenLei WangYao ChenHaopeng Sun . Advances in design strategies and imaging applications of specific butyrylcholinesterase probes. Chinese Chemical Letters, 2025, 36(7): 110451-. doi: 10.1016/j.cclet.2024.110451

    12. [12]

      Junliang ZhouTian-Bing RenLin Yuan . The strategy to improve the brightness of organic small-molecule fluorescent dyes for imaging. Chinese Chemical Letters, 2025, 36(8): 110644-. doi: 10.1016/j.cclet.2024.110644

    13. [13]

      Qian PangFangjun HuoYongkang YueCaixia Yin . ONOO and viscosity dual-response fluorescent probe for arthritis imaging in vivo. Chinese Chemical Letters, 2025, 36(9): 110713-. doi: 10.1016/j.cclet.2024.110713

    14. [14]

      Can WangZhe SunDonghan Ma . Review of imaging buffers used in stochastic optical reconstruction microscopy. Chinese Chemical Letters, 2025, 36(9): 110677-. doi: 10.1016/j.cclet.2024.110677

    15. [15]

      Botao QUQian WANGXiaogang NINGYuxin ZHOURuiping ZHANG . Deeply penetrating photoacoustic imaging in tumor tissues based on dual-targeted melanin nanoparticle. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1025-1032. doi: 10.11862/CJIC.20230416

    16. [16]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    17. [17]

      Hui-Juan WangWen-Wen XingZhen-Hai YuYong-Xue LiHeng-Yi ZhangQilin YuHongjie ZhuYao-Yao WangYu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183

    18. [18]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    19. [19]

      Yiling LiZekun GaoXiuxiu YueMinhuan LanXiuli ZhengBenhua WangShuang ZhaoXiangzhi Song . FRET-based two-photon benzo[a] phenothiazinium photosensitizer for fluorescence imaging-guided photodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109133-. doi: 10.1016/j.cclet.2023.109133

    20. [20]

      Lijia XuTong ZhongWei ZhaoBing YaoLin DingHuangxian Ju . Chemoselective labeling-based spermatozoa glycan imaging reveals abnormal glycosylation in oligoasthenotspermia. Chinese Chemical Letters, 2024, 35(4): 108760-. doi: 10.1016/j.cclet.2023.108760

Metrics
  • PDF Downloads(0)
  • Abstract views(58)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return