Citation: Yongwei ZHANG, Chuang ZHU, Wenbin WU, Yongyong MA, Heng YANG. Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386 shu

Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction

Figures(8)

  • Zn nanoparticles-modified nitrogen-doped porous carbon (N-C) catalysts (Zn@N-C) were prepared by a simple one-step pyrolysis strategy using Zn-based zeolite imidazolate framework (Zn-ZIF) as the precursor. Subsequently, the Zn nanoparticles were further converted to the ZnSe nanoparticles by using a selenization strategy; meanwhile, the heterostructure between the ZnSe and N-C was constructed to enhance the catalytic activity of the catalysts. The components, structures, and morphologies of as-prepared catalysts were characterized by using X-ray diffraction (XRD), Raman, X - ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). Electrochemical tests in water splitting systematically evaluated the hydrogen evolution reaction (HER) catalytic activity and stability of the catalysts. Results showed that the morphology of the catalyst was transformed from a regular rhombic dodecahedron (Zn@N-C) to a structurally collapsed, folded, and deformed dodecahedron (ZnSe@N-C) by selenization, which increased the structural defects and introduced more catalytic active sites. Meanwhile, the existence of a heterogeneous interfacial structure between the ZnSe and N-C substrates was beneficial to the electron transport and improved the catalytic activity of the catalysts. ZnSe@N-C yielded a low overpotential of 165.8 mV at a current density of 10 mA·cm-2 in the HER process, which was superior to that of Zn@N-C (190.8 mV). ZnSe@N-C also demonstrated good electrochemical stability in an alkaline solution.
  • 加载中
    1. [1]

      ZHU B J, ZOU R Q, XU Q. Metal-organic framework based catalysts for hydrogen evolution[J]. Adv. Energy Mater., 2018,8(24)1801193. doi: 10.1002/aenm.201801193

    2. [2]

      PAUL R, ZHU L, CHEN H, QU J, DAI L M. Recent advances in carbon-based metal-free electrocatalysts[J]. Adv. Mater., 2019,31(31)1806403. doi: 10.1002/adma.201806403

    3. [3]

      YU P, WANG F M, SHIFA T A, ZHAN X Y, LOU X D, XIA F, HE J. Earth abundant materials beyond transition metal dichalcogenides: A focus on electrocatalyzing hydrogen evolution reaction[J]. Nano Energy, 2019,58:244-276. doi: 10.1016/j.nanoen.2019.01.017

    4. [4]

      WANG X M, MA W G, XU Z Q, WANG H, FAN W J, ZONG X, LI C. Metal phosphide catalysts anchored on metal-caged graphitic carbon towards efficient and durable hydrogen evolution electrocatalysis[J]. Nano Energy, 2018,48:500-509. doi: 10.1016/j.nanoen.2018.04.011

    5. [5]

      ZHANG T, WU M Y, YAN D Y, MAO J, LIU H, HU W B, DU X W, LING T, QIAO S Z. Engineering oxygen vacancy on NiO nanorod arrays for alkaline hydrogen evolution[J]. Nano Energy, 2018,43:103-109. doi: 10.1016/j.nanoen.2017.11.015

    6. [6]

      GAO X H, ZHANG H X, LI Q G, YU X G, HONG Z L, ZHANG X W, LIANG C D, LIN Z. Hierarchical NiCo2O4 hollow microcuboids as bifunctional electrocatalysts for overall water-splitting[J]. Angew. Chem.?Int. Edit., 2016,55(21):6290-6294. doi: 10.1002/anie.201600525

    7. [7]

      FAN X J, PENG Z W, YE R Q, ZHOU H Q, GUO X. M3C (M: Fe, Co, Ni) nanocrystals encased in graphene nanoribbons: An active and stable bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reactions[J]. ACS Nano, 2015,9(7):7407-7418. doi: 10.1021/acsnano.5b02420

    8. [8]

      REN J T, CHEN L, YANG D D, YUAN Z Y. Molybdenum-based nanoparticles (Mo2C, MoP and MoS2) coupled heteroatoms-doped carbon nanosheets for efficient hydrogen evolution reaction[J]. Appl. Catal. B‒Environ., 2020,263118352. doi: 10.1016/j.apcatb.2019.118352

    9. [9]

      QIAO D, YUN S N, SUN M L, DANG J W, ZHANG Y W, YUAN S X, YANG G P, YANG T X, GAO Z, WANG Z G. 1D/3D trepang-like N-modified carbon confined bimetal carbides and metal cobalt: Boosting electron transfer via dual Mott-Schottky heterojunctions triggered built-in electric fields for efficient hydrogen evolution and tri-iodide reduction[J]. Appl. Catal. B‒Environ., 2023,33412283.

    10. [10]

      MA F H, WANG S H, GONG X Q, LIU X L, WANG Z Y, WANG P, LIU Y Y, CHENG H F, DAI Y, ZHENG Z K, HUANG B B. Highly efficient electrocatalytic hydrogen evolution coupled with upcycling of microplastics in seawater enabled via Ni3N/W5N4 Janus nanostructures[J]. Appl. Catal. B‒Environ., 2022,307121198. doi: 10.1016/j.apcatb.2022.121198

    11. [11]

      ZHU J, HU L S, ZHAO P X, LEE L Y S, WONG K Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles[J]. Chem. Rev., 2020,120(2):851-918. doi: 10.1021/acs.chemrev.9b00248

    12. [12]

      ANANTHARAJ S, EDE S R, SAKTHIKUMAR K, KARTHICK K, MISHRA S, KUNDU S. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: A Review[J]. ACS Catal., 2016,6(12):8069-8097. doi: 10.1021/acscatal.6b02479

    13. [13]

      WANG J, XU F, JIN H Y, CHEN Y Q, WANG Y. Non-noble metal-based carbon composites in hydrogen evolution reaction: Fundamentals to applications[J]. Adv. Mater., 2017,29(14)1605838. doi: 10.1002/adma.201605838

    14. [14]

      ZHOU W J, JIA J, LU J, YANG L J, HOU D M, LI G Q, CHEN S W. Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction[J]. Nano Energy, 2016,28:29-43.

    15. [15]

      DANG C W, ZHANG Y W, HAN F, DANG J E, LIU Z L, WANG Y H, DENG Y Y, YUN S N. Chemical co-precipitation preparation of ZnMoO4/aloe-derived porous carbon and catalytic performance[J]. Chinese J. Inorg. Chem., 2022,38(3):489-500.

    16. [16]

      ZHANG Y W, YUN S N, QIAO X Y, SUN M L, DANG J E, DANG C W, YANG J J. Hybridization of Mn/Ta bimetallic oxide and mesh-like porous bio-carbon for boosting copper reduction for D35/Y123-sensitized solar cells and hydrogen evolution[J]. J. Alloy. Compd., 2022,893162349. doi: 10.1016/j.jallcom.2021.162349

    17. [17]

      JIANG H, GU J X, ZHENG X S, LIU M, QIU X Q, WANG L B, LI W Z, CHEN Z F, JI X B, LI J. Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER[J]. Energy Environ. Sci., 2019,12(1):322-333. doi: 10.1039/C8EE03276A

    18. [18]

      ZHANG Y W, YUN S N, DANG J E, DANG C W, YANG G P, WANG Y H, LIU Z L, DENG Y Y. Defect engineering via ternary nonmetal doping boosts the catalytic activity of ZIF-derived carbon-based metal-free catalysts for photovoltaics and water splitting[J]. Mater. Today Phys., 2022,27100785. doi: 10.1016/j.mtphys.2022.100785

    19. [19]

      MENG X T, YU C, SONG X D, LIU Y, LIANG S X, LIU Z Q, HAO C, QIU J S. Nitrogen-doped graphene nanoribbons with surface enriched active sites and enhanced performance for dye-sensitized solar cells[J]. Adv. Energy Mater., 2015,5(11)1500180. doi: 10.1002/aenm.201500180

    20. [20]

      ZHANG Y W, YUN S N, SUN M S, WANG X, ZHANG L S, DANG J E, YANG C, YANG J J, DANG C W, YUAN S X. Implanted metal-nitrogen active sites enhance the electrocatalytic activity of zeolitic imidazolate zinc framework-derived porous carbon for the hydrogen evolution reaction in acidic and alkaline media[J]. J. Colloid Interface Sci., 2021,604:441-457. doi: 10.1016/j.jcis.2021.06.152

    21. [21]

      YUN S N, ZHANG Y W, ZHANG L S, LIU Z L, DENG Y Y. Ni and Fe nanoparticles, alloy and Ni/Fe-Nx coordination co-boost the catalytic activity of the carbon-based catalyst for triiodide reduction and hydrogen evolution reaction[J]. J. Colloid Interface Sci., 2022,615:501-516. doi: 10.1016/j.jcis.2022.01.192

    22. [22]

      KUANG M, WANG Q H, HAN P, ZHENG G F. Cu, Co-embedded N-enriched mesoporous carbon for efficient oxygen reduction and hydrogen evolution reactions[J]. Adv. Energy Mater., 2017,7(17)1700193. doi: 10.1002/aenm.201700193

    23. [23]

      LIN L, ZHU Q, XU A W. Noble-metal-free Fe-N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions[J]. J. Am. Chem. Soc., 2014,136(31):11027-11033. doi: 10.1021/ja504696r

    24. [24]

      CHANG J W, HUANG L L, YU C, DING Y W, YAO C, QIU J S. Highly efficient & economic synthesis of CoS1.097/nitrogen-doped carbon for enhanced triiodide reduction[J]. Carbon, 2021,174:445-450. doi: 10.1016/j.carbon.2020.12.057

    25. [25]

      PENG Y, SANATI S, MORSALI A, GARCÍA H. Metal-organic frameworks as electrocatalysts[J]. Angew. Chem.?Int. Edit., 2023,135(9)e202214707. doi: 10.1002/ange.202214707

    26. [26]

      SHEN K, CHEN X D, CHEN J Y, LI Y W. Development of MOF-derived carbon-based nanomaterials for efficient catalysis[J]. ACS Catal., 2016,6(9):5887-5903.

    27. [27]

      LI Y C, HU R M, CHEN Z B, WAN X, SHANG J X, WANG F H, SHUI J L. Effect of Zn atom in Fe-N-C catalysts for electro-catalytic reactions: Theoretical considerations[J]. Nano Res., 2021,14(3):611-619.

    28. [28]

      WAN X, LIU X F, LI Y C, YU R H, ZHENG L R, YAN W S, WANG H, XU M, SHUI J L. Fe-N-C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells[J]. Nat. Catal., 2019,2(3):259-268.

    29. [29]

      LI Y C, LIU X F, ZHENG L R, SHANG J X, WAN X, HU R M, GUO X, HONG S, SHUI J L. Preparation of Fe-N-C catalysts with FeNx (x=1, 3, 4) active sites and comparison of their activities for the oxygen reduction reaction and performances in proton exchange membrane fuel cells[J]. J. Mater. Chem. A, 2019,7(45):26147-26153.

    30. [30]

      YUAN S X, YUN S N, ZHANG Y W, DANG J E, SUN M L, DANG C W, DENG Y Y. Dual-phase zinc selenide in situ encapsulated into size-reduced ZIF-8 derived selenium and nitrogen co-doped porous carbon for efficient triiodide reduction reaction[J]. J. Mater. Chem. C, 2021,9(40):14408-14420.

    31. [31]

      CHU C S, RAO S, MA Z F, HAN H L. Copper and cobalt nanoparticles doped nitrogen-containing carbon frameworks derived from CuO-encapsulated ZIF-67 as high-efficiency catalyst for hydrogenation of 4-nitrophenol[J]. Appl. Catal. B‒Environ., 2019,256117792.

    32. [32]

      LIU Z L, YUN S N, SUN M L, DANG J E, ZHANG Y W, WANG Y H, DANG C W, DENG Y Y, QIAO D. Constructing MoS2@Co1.11Te2/Co-NCD with Te nanorods for efficient hydrogen evolution reaction and triiodide reduction[J]. Mater. Today Nano, 2022,20100274.

    33. [33]

      DUAN J J, CHEN S, JARONIEC M, QIAO S Z. Heteroatom-doped graphene-based materials for energy-relevant electrocatalytic processes[J]. ACS Catal., 2015,5(9):5207-5234.

    34. [34]

      WANG Y X, XU N N, HE R N, PENG L W, CAI D Q, QIAO J L. Large-scale defect-engineering tailored tri-doped graphene as a metal-free bifunctional catalyst for superior electrocatalytic oxygen reaction in rechargeable Zn-air battery[J]. Appl. Catal. B‒Environ., 2021,285119811.

    35. [35]

      LI Z H, HE H Y, CAO H B, SUN S M, DIAO W L, GAO D L, LU P L, ZHANG S S, GUO Z, LI M J, LIU R J, REN D H, LIU C M, ZHANG Y, YANG Z, JIANG J K, ZHANG G G. Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous Janus-like carbon frameworks for bifunctional oxygen electrocatalysis[J]. Appl. Catal. B‒Environ., 2019,240:112-121.

    36. [36]

      CHEN Y J, REN Z Y, FU H Y, ZHANG X, TIAN G H, FU H G. NiSe-Ni0.85Se heterostructure nanoflake arrays on carbon paper as efficient electrocatalysts for overall water splitting[J]. Small, 2018,14(25)1800763.

    37. [37]

      HUANG H, ZHAO Y, BAI Y M, LI F M, ZHANG Y, CHEN Y. Conductive metal-organic frameworks with extra metallic sites as an efficient electrocatalyst for the hydrogen evolution reaction[J]. Adv. Sci., 2020,7(9)2000012.

    38. [38]

      WANG Y, PAN Y, ZHU L K, YU H H, DUAN B Y, WANG R W, ZHANG Z T, QIU S L. Solvent-free assembly of Co/Fe-containing MOFs derived N-doped mesoporous carbon nanosheets for ORR and HER[J]. Carbon, 2019,146:671-679.

    39. [39]

      WU Y L, LI X F, WEI Y S, FU Z M, WEI W B, WU X T, ZHU Q L, XU Q. Ordered macroporous superstructure of nitrogen-doped nanoporous carbon implanted with ultrafine Ru nanoclusters for efficient pH-universal hydrogen evolution reaction[J]. Adv. Mater., 2021,33(12)2006965.

    40. [40]

      WANG X Q, HE J R, YU B, SUN B C, YANG D X, ZHANG X J, ZHANG Q H, ZHANG W L, GU L, CHEN Y F. CoSe2 nanoparticles embedded MOF-derived Co-N-C nanoflake arrays as efficient and stable electrocatalyst for hydrogen evolution reaction[J]. Appl. Catal. B‒Environ., 2019,258117996.

    41. [41]

      LI H Y, CHEN S M, JIA X F, XU B, LIN H F, YANG H Z, SONG L, WANG X. Amorphous nickel-cobalt complexes hybridized with 1T-phase molybdenum disulfide via hydrazine-induced phase transformation for water splitting[J]. Nat. Commun., 2017,8(1)15377.

    42. [42]

      SUN M L, YUN S N, DANG J E, ZHANG Y W, LIU Z L, QIAO D. 1D/3D rambutan-like Mott-Schottky porous carbon polyhedrons for efficient tri-iodide reduction and hydrogen evolution reaction[J]. Chem. Eng. J., 2023,458141301.

  • 加载中
    1. [1]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    2. [2]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    3. [3]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    4. [4]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    5. [5]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    6. [6]

      Zhengyu ZhouHuiqin YaoYoulin WuTeng LiNoritatsu TsubakiZhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-0. doi: 10.3866/PKU.WHXB202312010

    7. [7]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    8. [8]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    9. [9]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    10. [10]

      Huasen LuShixu SongQisen JiaGuangbo LiuLuhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035

    11. [11]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    12. [12]

      Kai PENGXinyi ZHAOZixi CHENXuhai ZHANGYuqiao ZENGJianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454

    13. [13]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    14. [14]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    15. [15]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    16. [16]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    17. [17]

      Shiqian WEIXinyu TIANHong LIUMaoxia CHENFan TANGQiang FANWeifeng FANYu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102

    18. [18]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    19. [19]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    20. [20]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

Metrics
  • PDF Downloads(2)
  • Abstract views(883)
  • HTML views(245)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return