Citation: Xichen YAO, Shuxian WANG, Yun WANG, Cheng WANG, Chuang ZHANG. Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384 shu

Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers

Figures(6)

  • Using ammonium persulfate - initiated in - situ polymerization of pyrrole monomer to form a three- dimensional porous aerogel as the carrier, and ferrocene as the metal precursor, a series of Fe/N/C catalysts with different iron loadings were prepared via high-temperature pyrolysis under argon atmosphere. The results demonstrated that the aerogel-supported catalysts exhibited excellent oxygen reduction reaction (ORR) activity and stabili- ty in acidic media. The optimal catalyst performance was achieved when the ferrocene loading was 12 mg, showing a half-wave potential of 0.691 V (vs RHE) and an average electron transfer number of 3.97, indicating a reaction pathway approaching the ideal four-electron process. Moreover, after 10 000 cycles of cyclic voltammetry testing, the half -wave potential of this catalyst only decayed by 11 mV, highlighting its superior electrochemical durability.
  • 加载中
    1. [1]

      WU M J, ZHANG G X, YANG H M, LIU X H, DUBOIS M, GAUTHIER M A, SUN S H. Aqueous Zn - based rechargeable batteries: Recent progress and future perspectives[J]. InfoMat, 2022,4(5)e12265. doi: 10.1002/inf2.12265

    2. [2]

      ZAMAN S, HUANG L, DOUKA A I, YANG H, YOU B, XIA B Y. Oxygen reduction electrocatalysts toward practical fuel cells: Progress and perspectives[J]. Angew. Chem.- Int. Edit., 2021,60(33):17832-17852. doi: 10.1002/anie.202016977

    3. [3]

      ZHANG Y D, LI J Y, CHEN Y H, HUANG J, PENG Q, ZHANG L, ZHU X, LIAO Q. Spherical mesoporous Fe-N-C catalyst for the air cathode of membrane-less direct formate fuel cells[J]. Int. J. Hydrog. Energy, 2023,48(76):29738-29747. doi: 10.1016/j.ijhydene.2023.04.098

    4. [4]

      QIN L, CHEN W F, LAI C, LIU S Y, FU Y K, YAN H C, XU F H, MA D S, DUAN A, DENG H, YANG Q, SUN Y Y, YE H Y, CHEN W J. Highly efficient reduction of nitrophenols by Fe-N-C single- atom catalyst: Performance and mechanism insights[J]. J. Environ. Chem. Eng., 2023,11(3)110278. doi: 10.1016/j.jece.2023.110278

    5. [5]

      MENG L C, ZHANG H, KANG L, ZHANG Y, YU N F, ZHANG F, DU H L. Robust and flexible 3D integrated FeNi@NHCFs air electrode for high - performance rechargeable zinc - air battery[J]. Rare Met., 2024,43:5677-5689. doi: 10.1007/s12598-024-02815-5

    6. [6]

      ZHENG X J, GONG H Y, ZHANG N, SHI W H, SUN Q, QIAN Y H, JIANG L K, CAO X C, YANG R Z, YUAN C Z. A pore-confined strategy for synthesizing CoFe nanoparticles in mesoporous biocarbon matrix as advanced bifunctional oxygen electrocatalyst for zinc-air battery[J]. Rare Met., 2024,43:5757-5768. doi: 10.1007/s12598-024-02969-2

    7. [7]

      SONG M, ZHANG Q, SHEN T, LUO G Y, WANG D L. Surface reconstruction enabled o-PdTe@Pd core- shell electrocatalyst for efficient oxygen reduction reaction[J]. Chin. Chem. Lett., 2024,35(8)109083. doi: 10.1016/j.cclet.2023.109083

    8. [8]

      FENG Z X, WANG Y, MA Q, ZHANG C, WANG C. Preparation of Pt/C catalyst by continuous pipeline microwave technology and its oxygen reduction performance[J]. Chemical Industry and Engineering Progress, 2022,41(12):6377-6384.

    9. [9]

      JIA Z Y, RONDIYA S R, CROSS R W, WANG C, DZADE N Y, ZHANG C. ighly active methanol oxidation electrocatalyst based on 2D NiO porous nanosheets: A combined computational and experimental study[J]. Electrochim. Acta, 2021,394(20)139143.

    10. [10]

      MARSHALL - ROTH T, LIBRETTO N J, WROBEL A T, ANDER-TON K J, PEGIS M L, RICKE N D, VOORHIS T V, MILLER J T, SURENDRANATH Y. A pyridinic Fe - N4 macrocycle models the active sites in Fe/N-doped carbon electrocatalysts[J]. Nat. Commun., 2020,11(1)5283. doi: 10.1038/s41467-020-18969-6

    11. [11]

      ZHU W C, ZUO W, WANG P, ZHAN W, ZHANG J, LI L P, TIAN Y, QI H, HUANG R. Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe - N coordination and mechanism studies[J]. Chin. Chem. Lett., 2024,35(9)109341. doi: 10.1016/j.cclet.2023.109341

    12. [12]

      YAO X C, XIA Q, ZHANG C, WANG S X, NIE J Q, LIU D Z, PATIL G P, JADHAV C D. Iron-nitrogen-carbon aerogel for enhanced oxygen reduction in acidic media: The influence of temperature[J]. Adv. Sustain. Syst., 2025,9(3)24000885.

    13. [13]

      WANG Y, RUAN W, ZHOU Y. Phosphorus co-doped porous Fe/N/C for electrocatalytic reduction of oxygen[J]. Modern Chemical Industry, 2023,43(2):142-148.

    14. [14]

      ZHANG C, FENG Z X, LEI Y J, ZHANG X, GAO W T, SUN L G, LIU Z Z, WANG J L, WANG Y, WANG C. Batch synthesis of high activity and durability carbon supported platinum catalysts for oxygen reduction reaction using a new facile continuous microwave pipeline technology[J]. J. Colloid Interface Sci., 2022,628:174-188. doi: 10.1016/j.jcis.2022.08.058

    15. [15]

      ZHANG Y F, AN L Y, HAN H Q, WANG J, JIN C Y, WEI H Z. Catalytic air oxidation of thiosulfate by nitrogen-doped carbon supported iron catalyst[J]. Chinese Journal of Environmental Engineering, 2023,17(8):2556-2564.

    16. [16]

      FENG Z X, JADHAV C, PATIL G, WANG Y, JIA Z, BAVISKAR V, MINNES R, ZHANG C. Solution processed 2D SnSe nanosheets catalysts: Temperature dependent oxygen reduction reaction performance in alkaline media[J]. J. Electroanal. Chem., 2022,916116381. doi: 10.1016/j.jelechem.2022.116381

    17. [17]

      JUNAIDI N H A, WONG W Y, LOH K S, SAIDUR R, CHOO T F, WU B. Enhanced oxygen reduction reaction catalyst stability and durability of MXene-supported Fe-N-C catalyst for proton exchange membrane fuel cell application[J]. J. Alloy. Compd., 2023,968171898. doi: 10.1016/j.jallcom.2023.171898

    18. [18]

      ZHOU P F, XIANG Z H, YAN X H. Electrocatalytic performances of nitrogen-doped carbon supported cobalt ferrite for oxygen reduction reaction[J]. Modern Chemical Research, 2022(20):49-51.

    19. [19]

      WANG Y F, CHEN L M, LAI Y J, WANG Y, WANG K, SONG S. MOF-derived porous Fe-N-C materials for efficiently electrocatalyzing the oxygen reduction reaction[J]. Energy Fuels, 2022,36(10):5415-5423. doi: 10.1021/acs.energyfuels.2c00946

    20. [20]

      YUAN K, LüTZENKIRCHEN-HECHT D, LI L B, SHUAI L, LI Y Z, CAO R, QIU M, ZHUANG X D, LEUNG M K H, CHEN Y W, ULLRICH S. Boosting oxygen reduction of single iron active sites via geometric and electronic engineering: Nitrogen and phosphorus dual coordination[J]. J. Am. Chem. Soc., 2020,142(5):2404-2412. doi: 10.1021/jacs.9b11852

    21. [21]

      GUPTA S, ZHAO S, OGOKE O, LIN Y, XU H, WU G. Engineering favorable morphology and structure of Fe - N - C oxygen - reduction catalysts through tuning of nitrogen/carbon precursors[J]. ChemSusChem, 2017,10(4):774-785. doi: 10.1002/cssc.201601397

    22. [22]

      HUANG Y P, LIU W F, KAN S T, LIU P G, HAO R, HU H, ZHANG J, LIU H T, LIU M, LIU K Y. Tuning morphology and structure of Fe-N-C catalyst for ultra-high oxygen reduction reaction activity[J]. Int. J. Hydrog. Energy, 2020,45(11):6380-6390. doi: 10.1016/j.ijhydene.2019.12.130

    23. [23]

      CHENG H, YANG M X, ZHANG C, LIU D Z, JIA Z Y, WANG Y, LIANG Y, WANG C. Research on preparation of high activity and durable carbon-supported platinum catalyst for methanol electro- oxidation by a facile continuous microwave pipeline method[J]. Colloids Surf. A, 2024,687133548. doi: 10.1016/j.colsurfa.2024.133548

    24. [24]

      WEISS J, ZHANG H G, ZELENAY P. Recent progress in the durability of Fe-N-C oxygen reduction electrocatalysts for polymer electrolyte fuel cells[J]. J. Electroanal. Chem., 2020,875114696. doi: 10.1016/j.jelechem.2020.114696

    25. [25]

      LEI C, CHANG W, ZHOU Y Y, LUO J, LI Y F, LIU B. Preparation and photocatalytic properties of 3D recyclable Bi2WO6/graphene aerogels[J]. Chemical Industry and Engineering, 2024,41(1):21-27. doi: 10.3969/j.issn.1006-7906.2024.01.009

    26. [26]

      LIU P P, CHEN X, LI Y, CHENG P, TANG Z D, LV J J, AFTAB W, WANG G. Aerogels meet phase change materials: Fundamentals, advances, and beyond[J]. ACS Nano, 2022,16(10):15586-15626. doi: 10.1021/acsnano.2c05067

    27. [27]

      FENG Z X, LU J P, ZHANG C, LIU D Z, JIA Z Y, WANG Y, WANG C. New facile continuous microwave pipeline technology for the preparation of highly stable and active carbon- supported platinum catalyst[J]. ChemElectroChem, 2024,11(5)e202300546. doi: 10.1002/celc.202300546

    28. [28]

      ZHANG C, CHENG H, ZHANG J, FENG Z X, LIU D Z, JIA Z Y, LIANG Y, WANG Y. Effect of dual heat treatment on the oxygen reduction performance of nanoparticles of Pt on carbon catalysts prepared by continuous flow microwave technology[J]. ACS Appl. Nano Mater., 2024,7(10):11475-11486. doi: 10.1021/acsanm.4c01090

    29. [29]

      ZION N, DOUGLIN J C, CULLEN D A, ZELENAY P, DEKEL D R, ELBAZ L. Porphyrin aerogel catalysts for oxygen reduction reaction in anion-exchange membrane fuel cells[J]. Adv. Funct. Mater., 2021,31(24)2100963. doi: 10.1002/adfm.202100963

    30. [30]

      LIANG J F, LING Y H, WU X W, ACCIARI H A, ZHANG Z J. Fishnet-like Ni-Fe-N co-modified graphene aerogel catalyst for highly efficient oxygen reduction reaction in an alkaline medium[J]. J. Appl. Electrochem., 2019,49:1211-1226. doi: 10.1007/s10800-019-01360-9

    31. [31]

      JIANG L L, ZENG M, WANG C Y, LUO Z H, LI H Y, YI Y. Pt-Ni alloy catalyst supported on carbon aerogel via one- step method for oxygen reduction reaction[J]. J. Solid State Electrochem., 2021,26:481-490.

    32. [32]

      FANG Z W, LI P P, YU G H. Gel electrocatalysts: An emerging material platform for electrochemical energy conversion[J]. Adv. Mater., 2020,32(39)2003191. doi: 10.1002/adma.202003191

    33. [33]

      JERKIEWICZ G. Standard and reversible hydrogen electrodes: The-ory, design, operation, and applications[J]. ACS Catal, 2020,10(15):8409-8417. doi: 10.1021/acscatal.0c02046

    34. [34]

      LI G D, PEI L, WU Y, ZHU B, HU Q, YANG H P, ZHANG Q L, LIU J H, HE C X. Facile synthesis of polyacrylonitrile-based N/S-codoped porous carbon as an efficient oxygen reduction electrocatalyst for zinc-air batteries[J]. J. Mater. Chem. A, 2019,7(18):11223-11233. doi: 10.1039/C9TA02256B

    35. [35]

      ZHU Y, ZHANG Z Y, LI W Q, LEI Z, CHENG N C, TAN Y Y, MU S C, SUN X L. Highly exposed active sites of defect - enriched derived MOFs for enhanced oxygen reduction reaction[J]. ACS Sustain. Chem. Eng., 2019,7(21):17855-17862. doi: 10.1021/acssuschemeng.9b04380

    36. [36]

      JAIN D, MAMTANI K, GUSTIN V, GUNDUZ S, CELIK G, WALUYO I, HUNT A, CO A C, OZKAN U S. Enhancement in oxygen reduction reaction activity of nitrogen-doped carbon nanostructures in acidic media through chloride - ion exposure[J]. ChemElectroChem, 2018,5(14):1966-1975. doi: 10.1002/celc.201800134

    37. [37]

      STEVENS J, BYARD S, SEATON C, SADIQ G, DAVEY R, SCHROEDER S. Proton transfer and hydrogen bonding in the organic solid state: A combined XRD/XPS/ssNMR study of 17 organic acidbase complexes[J]. Phys. Chem. Chem. Phys., 2014,16(3):1150-1160. doi: 10.1039/C3CP53907E

    38. [38]

      QIN Y, OU Z H, GUO C Z, LIU Y, JIN R, XU C L, CHEN H F, SI Y J, LI H L. Phosphor-doping modulates the d-band center of Fe atoms in Fe-N4 catalytic sites to boost the activity of oxygen reduction[J]. Appl. Catal. B?Environ., 2025,360124553. doi: 10.1016/j.apcatb.2024.124553

    39. [39]

      ŠETKA M, CALAVIA R, VOJKŮVKA L, LLOBET E, DRBOHLAVOVá J, VALLEJOS S. Raman and XPS studies of ammonia sensitive polypyrrole nanorods and nanoparticles[J]. Sci. Rep., 2019,98465. doi: 10.1038/s41598-019-44900-1

    40. [40]

      ARTYUSHKOVA K, KIEFER B, HALEVI B, KNOP-GERICKE A, SCHLOGL R, ATANASSOV P. Density functional theory calculations of XPS binding energy shift for nitrogen-containing graphenelike structures[J]. Chem. Commun., 2013,49(25):2539-2541. doi: 10.1039/c3cc40324f

    41. [41]

      RANJBAR SAHRAIE N, PARAKNOWITSCH J P, GÖBEL C, THOMAS A, STRASSER P. Noble-metal-free electrocatalysts with enhanced ORR performance by task-specific functionalization of carbon using ionic liquid precursor systems[J]. J. Am. Chem. Soc., 2014,136(41):14486-14497. doi: 10.1021/ja506553r

    42. [42]

      DING S, NING K, YUAN B X, PAN W G, YIN S B, LIU J F. Durability of Fe - N/C catalysts with different nanostructures for electrochemical oxygen reduction in alkaline solution[J]. J. Inorg. Mater., 2020,35(8):953-961.

    43. [43]

      QIAN Y D, DU P, WU P, CAI C X, GERVASIO D F. Chemical nature of catalytic active sites for the oxygen reduction reaction on nitrogen - doped carbon - supported non - noble metal catalysts[J]. J. Phys. Chem. C, 2016,120(18):9884-9896. doi: 10.1021/acs.jpcc.6b02670

    44. [44]

      CHEN W, CUI H W, LIAO L W, XU Y J, CAI J, CHEN Y X. Challenges in unravelling the intrinsic kinetics of gas reactions at rotating disk electrodes by Koutecky-Levich equation[J]. J. Phys. Chem. C, 2023,127(33):16235-16248. doi: 10.1021/acs.jpcc.3c02677

  • 加载中
    1. [1]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    4. [4]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    5. [5]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    6. [6]

      Shiqi Zhang Heng Zhang Aiwen Lei . 从物理化学的角度看化学能的利用. University Chemistry, 2025, 40(6): 310-315. doi: 10.12461/PKU.DXHX202408124

    7. [7]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    8. [8]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    11. [11]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    12. [12]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    13. [13]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    14. [14]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    15. [15]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    16. [16]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    17. [17]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    18. [18]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    19. [19]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    20. [20]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

Metrics
  • PDF Downloads(0)
  • Abstract views(13)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return