Citation:
Huafeng SHI. Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(7): 1380-1386.
doi:
10.11862/CJIC.20240378
-
The nickel foam (NF)-supported MnCoNi layered double hydroxide (LDH) nano-needle array was used as a substrate. Through a three-step wet-chemical route, a Co-Ni-S polymetallic sulfide-supported MnCoNi LDH@Co-Ni-S/NF amorphous hollow-polyhedral nanocomposite was successfully synthesized, demonstrating outstanding electrocatalytic oxygen evolution performance. The results of electrochemical tests showed that the material could output a current density of 50 mA·cm-2 with an overpotential of only 248 mV in a 1.0 mol·L-1 KOH solution. In addition, the constructed MnCoNi LDH@Co-Ni-S hollow polyhedral electrode could operate continuously and stably for at least 20 h under different current densities of 40, 60, and 80 mA·cm-2, fully demonstrating that this electrode had good long-term stability.
-
-
-
[1]
FIORI G, BONACCORSO F, IANNACCONE G, PALACIOS T, NEUMAIER D, SEABAUGH A. Electronics based on two-dimensional materials[J]. Nat. Nanotechnol., 2014,9:768-779. doi: 10.1038/nnano.2014.207
-
[2]
XU S J, LEI Z Y, WU P Y. Facile preparation of 3D MoS2/MoSe2 nanosheet-graphene networks as efficient electrocatalysts for the hydrogen evolution reaction[J]. J. Mater. Chem. A, 2015,3:16337-16347. doi: 10.1039/C5TA02637G
-
[3]
DENG C, DING F, LI X Y, GUO Y F, NI W, YAN Y M. Templated-preparation of a three-dimensional molybdenum phosphide sponge as a high performance electrode for hydrogen evolution[J]. J. Mater. Chem. A, 2015,4:59-66.
-
[4]
LIN H F, LI H Y, LI Y Y, LIU J L, WANG X, WANG L. Hierarchical CoS/MoS2 and Co3S4/MoS2/Ni2P nanotubes for efficient electrocatalytic hydrogen evolution in alkaline media[J]. J. Mater. Chem. A, 2017,5:25410-25419. doi: 10.1039/C7TA08760H
-
[5]
SUBRAMANI V, SONG C, ANPO M, ANDRESEN J M. Recent advances in catalytic production of hydrogen from renewable sources[J]. Catal. Today, 2007,129:263-264. doi: 10.1016/j.cattod.2007.08.016
-
[6]
DINCER I, AYDIN M I. New paradigms in sustainable energy systems with hydrogen[J]. Energy Convers. Manag., 2023,283116950. doi: 10.1016/j.enconman.2023.116950
-
[7]
CHEN J, ZHOU W J, JIA J, WAN B A, LU J, XIONG T L. Porous molybdenum carbide microspheres as efficient binder-free electrocatalysts for suspended hydrogen evolution reaction[J]. Int. J. Hydrog. Energy, 2017,42:6448-6454. doi: 10.1016/j.ijhydene.2016.12.048
-
[8]
FANG S L, CHOU T C, SAMIREDDI S, CHEN K H, CHEN L C, CHEN W F. Enhanced hydrogen evolution reaction on hybrids of cobalt phosphide and molybdenum phosphide[J]. R. Soc. Open Sci., 2017,4161016. doi: 10.1098/rsos.161016
-
[9]
PENG Z, ZHANG Q, QI G, ZHANG H, LIU Q, HU G. Nanostructured Pt@RuO catalyst for boosting overall acidic seawater splitting[J]. Chin. J. Struct. Chem., 2024,43100191.
-
[10]
WANG M, CHEN L, SUN L C. Recent progress in electrochemical hydrogen production with earth- abundant metal complexes as catalysts[J]. Energy Environ. Sci., 2012,5:6763-6768. doi: 10.1039/c2ee03309g
-
[11]
DONG C L, ZHANG X L, XU J, SI R, SHENG J, LUO J. Rutheniumdoped cobalt - chromium layered double hydroxides for enhancing oxygen evolution through regulating charge transfer[J]. Small, 2020,16:1-7.
-
[12]
LIU S J, ZHU J, SUN M, MA Z X, HU K, NAKAJIMA T. Promoting the hydrogen evolution reaction through oxygen vacancies and phase transformation engineering on layered double hydroxide nanosheets[J]. J. Mater. Chem. A, 2020,8:2490-2497. doi: 10.1039/C9TA12768B
-
[13]
YUAN F F, WEI J D, QIN G X, NI Y H. Carbon cloth supported hierarchical core-shell NiCo2S4@CoNi-LDH nanoarrays as catalysts for efficient oxygen evolution reaction in alkaline solution[J]. J. Alloy. Compd., 2020,830154658. doi: 10.1016/j.jallcom.2020.154658
-
[14]
ZHANG J T, YU L, CHEN Y, LU X F, GAO S Y, LOU X W. Designed formation of double-shelled Ni-Fe layered-double-hydroxide nanocages for efficient oxygen evolution reaction[J]. Adv. Mater., 2020,32:6432-6438.
-
[15]
HUANG Z F, SONG J J, DU Y H, XI S B, DOU S Y, LOU X W. Chemical and structural origin of lattice oxygen oxidation in Co-Zn oxyhydroxide oxygen evolution electrocatalysts[J]. Nat. Energy, 2019,4:329-338. doi: 10.1038/s41560-019-0355-9
-
[16]
LIU Y Q, ZHANG M, HU D, LI R Q, HU K, YAN K. Ar plasma-exfoliated ultrathin NiCo - layered double hydroxide nanosheets for enhanced oxygen evolution[J]. ACS Appl. Energy Mater., 2019,2:1162-1168. doi: 10.1021/acsaem.8b01717
-
[17]
DUTTA S, INDRA A, FENG Y, SONG T, PAIK U. Self-supported nickel iron layered double hydroxide-nickel selenide electrocatalyst for superior water splitting activity[J]. ACS Appl. Mater. Interfaces, 2017,9:33766-33774. doi: 10.1021/acsami.7b07984
-
[18]
LIU J, WANG J S, ZHANG B, RUAN Y J, LV L, JIANG J J. Hierarchical NiCo 2S4@NiFe LDH heterostructures supported on nickel foam for enhanced overall - water - splitting activity[J]. ACS Appl. Mater. Interfaces, 2017,9:15364-15372. doi: 10.1021/acsami.7b00019
-
[19]
CHEN L, CHEN H, WU L, LI G, TAO K, HAN L. Zeolitic imidazolate framework-derived Co3S4@NiFe-LDH core-shell heterostructure as efficient bifunctional electrocatalyst for water splitting[J]. ACS Appl. Mater. Interfaces, 2024,16:8751-8762. doi: 10.1021/acsami.3c16683
-
[20]
HUANG S H, MENG Y Y, HE S M, WU M M. N-, O-, and S-tridoped carbon-encapsulated Co9S8 nanomaterials: Efficient bifunctional electrocatalysts for overall water splitting[J]. Adv. Funct. Mater., 2017,27:1-10.
-
[21]
HAO J H, LUO W, YANG W S, LI L H, SHI W D. Origin of the enhanced oxygen evolution reaction activity and stability of a nitrogen and cerium co-doped CoS2 electrocatalyst[J]. J. Mater. Chem. A, 2020,8:22694-22702. doi: 10.1039/D0TA07163C
-
[22]
GUO Y N, TANG J, WANG Z L, KANG Y M, BANDO Y S, YAMAUCHI Y. Elaborately assembled core - shell structured metal sulfides as a bifunctional catalyst for highly efficient electrochemical overall water splitting[J]. Nano Energy, 2018,47:494-502. doi: 10.1016/j.nanoen.2018.03.012
-
[23]
XU W C, WANG H X. Earth-abundant amorphous catalysts for electrolysis of water[J]. Chin. J. Catal., 2017,38:991-1005. doi: 10.1016/S1872-2067(17)62810-9
-
[24]
LI B L, DAI L L, SU G L, XIA Z Q, YE Y X, LI Z S. Construction of defective MnCo-LDH nanoflowers with high activity for overall water splitting[J]. Fuel, 2024,364130961. doi: 10.1016/j.fuel.2024.130961
-
[25]
FENG X T, JIAO Q Z, LIU T, LI Q, YIN M M, ZHAO Y. Facile synthesis of Co 9S8 hollow spheres as a high-performance electrocatalyst for the oxygen evolution reaction[J]. ACS Sustain. Chem. Eng., 2018,6:1863-1871. doi: 10.1021/acssuschemeng.7b03236
-
[26]
ZHANG H, MENG G, WEI T, DING J Y, LIU Q, LUO J, LlU X J. Co doping promotes the alkaline overall seawater electrolysis performance over MnPSe3 nanosheets[J]. Chem. Commun., 2023,59:12144-12149. doi: 10.1039/D3CC03434H
-
[27]
YUAN F, ZHANG E L, LIU Z H, YANG K, ZHA Q Q, NI Y H. Hollow CoSx nanoparticles grown on FeCo - LDH microtubes for enhanced electrocatalytic performances for the oxygen evolution reaction[J]. ACS Appl. Energy Mater., 2021,4:12211-12223. doi: 10.1021/acsaem.1c01947
-
[28]
SHI H F, YANG K, WANG F F, NI Y H, ZHAI M H. Hierarchical MnCo2O4 nanowire@NiFe layered double hydroxide nanosheet heterostructures on Ni foam for overall water splitting[J]. CrystEngComm, 2021,23:7141-7150. doi: 10.1039/D1CE01037A
-
[29]
LIU W J, LIU W X, HOU T, DING J Y, WANG Z G, YIN R L, SAN X Y, FENG L G, LUO J. Coupling Co-Ni phosphides for energy-saving alkaline seawater splitting[J]. Nano Res., 2024,17:4797-4806. doi: 10.1007/s12274-024-6433-8
-
[30]
WANG M, WANG M, FU Y M, SHEN S H. Cobalt oxide and carbon modified hematite nanorod arrays for improved photoelectrochemical water splitting[J]. Chin. Chem. Lett., 2017,28:2207-2211. doi: 10.1016/j.cclet.2017.11.037
-
[31]
WANG H T, LEE H W, DENG Y, LU Z Y, HUA P C, LIU Y Y. Bifunctional non - noble metal oxide nanoparticle electrocatalysts through lithium - induced conversion for overall water splitting[J]. Nat. Commun., 2015,6:7261-7269. doi: 10.1038/ncomms8261
-
[32]
WANG F F, ZHANG K J, ZHA Q Q, NI Y H. Honeycomb-like Ni-Mo-S on Ni foam as superior bifunctional electrocatalyst for hydrogen evolution and urea oxidation[J]. J. Alloy. Compd., 2022,899163346. doi: 10.1016/j.jallcom.2021.163346
-
[33]
LI X L, ZHA Q Q, NI Y H. Ni - Fe phosphate/Ni foam electrode: Facile hydrothermal synthesis and ultralong oxygen evolution reaction durability[J]. ACS Sustain. Chem. Eng., 2019,7:18332-18340. doi: 10.1021/acssuschemeng.9b03711
-
[34]
LIU H, MA F X, XU C Y, YANG L, DU Y, WANG P P. Sulfurizing-induced hollowing of Co9S8 microplates with nanosheet units for highly efficient water oxidation[J]. ACS Appl. Mater. Interfaces, 2017,9:11634-11641. doi: 10.1021/acsami.7b00899
-
[35]
ZHONG J, WU T, WU Q, DU S, CHEN D C, CHEN B. N-and S-codoped graphene sheet - encapsulated Co9S8nanomaterials as excellent electrocatalysts for the oxygen evolution reaction[J]. J. Power Sources, 2019,417:90-98. doi: 10.1016/j.jpowsour.2019.02.024
-
[36]
ZHANG X P, SI C D, GUO X X, KONG R M, QU F L. A MnCo2S4 nanowire array as an earth- abundant electrocatalyst for an efficient oxygen evolution reaction under alkaline conditions[J]. J. Mater. Chem. A, 2017,5:17211-17215. doi: 10.1039/C7TA04804A
-
[37]
JADHAV H S, ROY A, THORAT G M, CHUNG W J, SEO J G. Hierarchical free-standing networks of MnCo2S4 as efficient electrocatalyst for oxygen evolution reaction[J]. Ind. Eng. Chem., 2019,71:452-459. doi: 10.1016/j.jiec.2018.12.002
-
[1]
-
-
-
[1]
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
-
[2]
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023
-
[3]
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
-
[4]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[5]
Weicheng Feng , Jingcheng Yu , Yilan Yang , Yige Guo , Geng Zou , Xiaoju Liu , Zhou Chen , Kun Dong , Yuefeng Song , Guoxiong Wang , Xinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013
-
[6]
Shiqian WEI , Xinyu TIAN , Hong LIU , Maoxia CHEN , Fan TANG , Qiang FAN , Weifeng FAN , Yu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102
-
[7]
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
-
[8]
Wuxin Bai , Qianqian Zhou , Zhenjie Lu , Ye Song , Yongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041
-
[9]
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
-
[10]
Yajuan Xing , Hui Xue , Jing Sun , Niankun Guo , Tianshan Song , Jiawen Sun , Yi-Ru Hao , Qin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046
-
[11]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[12]
Wentao Xu , Xuyan Mo , Yang Zhou , Zuxian Weng , Kunling Mo , Yanhua Wu , Xinlin Jiang , Dan Li , Tangqi Lan , Huan Wen , Fuqin Zheng , Youjun Fan , Wei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003
-
[13]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[14]
Sumiya Akter Dristy , Md Ahasan Habib , Shusen Lin , Mehedi Hasan Joni , Rutuja Mandavkar , Young-Uk Chung , Md Najibullah , Jihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-0. doi: 10.1016/j.actphy.2025.100079
-
[15]
Jia Wang , Qing Qin , Zhe Wang , Xuhao Zhao , Yunfei Chen , Liqiang Hou , Shangguo Liu , Xien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044
-
[16]
Wang Wang , Yucheng Liu , Shengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059
-
[17]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002
-
[18]
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
-
[19]
Kai PENG , Xinyi ZHAO , Zixi CHEN , Xuhai ZHANG , Yuqiao ZENG , Jianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454
-
[20]
Chunling Qin , Shuang Chen , Hassanien Gomaa , Mohamed A. Shenashen , Sherif A. El-Safty , Qian Liu , Cuihua An , Xijun Liu , Qibo Deng , Ning Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(408)
- HTML views(41)