Citation: Tieping CAO, Yuejun LI, Dawei SUN. Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366 shu

Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction

  • Corresponding author: Yuejun LI, bc640628@163.com
  • Received Date: 12 October 2024
    Revised Date: 6 March 2025

Figures(9)

  • A novel Bi/Bi2S3/TiO2 composite fibers photocatalytic materials were constructed by in-situ hydrothermal method using TiO2 nanofibers prepared by electrospinning technology serve as the matrix, bismuth nitrate as the bismuth source and ethylene glycol as the reducing agent. The morphology, structure, and optoelectronic properties of the composite fibers material were analyzed by powder X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscope, ultraviolet-visible absorption spectroscopy, photocurrent response, electrochemical impedance spectroscopy, and fluorescence emission spectroscopy. The photocatalytic CO2 reduction performance of Bi/Bi2S3/TiO2 composite fibers under a gas-solid reaction system was investigated. The results show that metal Bi nanoparticles and scaly Bi2S3 are orderly constructed on the surface of TiO2 nanofibers. The surface plasmon resonance (SPR) effect of metal Bi has a synergistic effect with the Bi2S3/TiO2 S-scheme heterojunction, which enables the efficient spatial separation and transfer of photogenerated carriers and effectively enhances the photocatalytic activity of Bi/Bi2S3/TiO2. In-depth research found that the S-scheme heterojunction possesses a unique mechanism of carrier movement, resulting in a robust redox capacity and strong driving force. The main products of the photocatalytic CO2 reduction were CH4 and CH3OH, with yields of 4.21 and 9.86 μmol·h-1·g-1, respectively, about three times that of Bi2S3/TiO2.
  • 加载中
    1. [1]

      XU L, IQBAL R, WANG Y J, TAIMOOR S, HAO L D, DONG R H, LIUK H, TEXTER J, SUN Z Y. Emerging two-dimensional materials: Synthesis, physical properties, and application for catalysis in energy conversion and storage[J]. Innov. Mater., 2024,2(1)100060. doi: 10.59717/j.xinn-mater.2024.100060

    2. [2]

      DING X, JING W N, YIN Y T, HE G W, BAI S J, WANG F, LI UY, GUO L J. Multi-species defect engineering synergistic localized sur-face plasmon resonance boosting photocatalytic CO2 reduction[J]. Chem. Eng. J., 2024,499156091. doi: 10.1016/j.cej.2024.156091

    3. [3]

      RRN C J, LI Q, LING C Y, WANG J L. Mechaniam-guided design of photocatalysts for CO2 reduction toward multiarbon products[J]. J. Am. Chem. Soc., 2023,145(51):28276-28284. doi: 10.1021/jacs.3c11972

    4. [4]

      SI S H, SHOU H W, MAO Y Y, CAI X Y, GENG Z K, ZHANG H Y, ZHANG J Y, TAN X, YE J H, YU T. Regulating the metallic Cu-Ga bond by S vacancy for improved photocatalytic CO2 reduction to C2H4[J]. Adv. Funct. Mater., 2023,61(41)e202209446.

    5. [5]

      HUANG H N, SHI R, LI Z H, ZHAO J Q, SU C L, ZHANG T R. Triphase photocatalytic CO2 reduction over silver-decorated titanium oxide at a gas-water boundary[J]. Angew. Chem.-Int. Edit., 2022,61(17)e202200802. doi: 10.1002/anie.202200802

    6. [6]

      LIU Y P, ZOU R, CHEN Z X, TU W G, XIA R D, IWUOHA E L, PENG X W. Engineering a hydrophobic-hydrophilic diphase in a Bi 2WO6-C3N4 heterojunction for solar-powered CO2 reduction[J]. ACS Catal., 2024,14:138-147. doi: 10.1021/acscatal.3c03983

    7. [7]

      BOYKOBILOV D, THAKUR S, SAMIEV A, NASIMOV A, TURAEV K, SUVONKUL NURMANOV S, PRAKASH J, RUZIMURADOV Q. Electrochemical synthesis and modification of novel TiO2 nanotubes: Chemistry and role of key synthesis parameters for photocatalytic applications in energy and environment[J]. Inorg. Chem. Commun., 2024,170113419. doi: 10.1016/j.inoche.2024.113419

    8. [8]

      KORCOBAN D, HUANG Y Z L, ELBOUME A, LI Q, WEN X M, CHEN D H, CARUSO R A. Electroless Ag nanoparticle deposition on TiO2 nanorod arrays, enhancing photocatalytic and antibacterial prop-erties[J]. J. Colloid Interface Sci., 2024,680:146-156.

    9. [9]

      CAO T P, LI Y J, SUN D W. Fabrication of Bi2Ti2O7/TiO2/Bi4Ti3O12 multi-heterojunction and the enhanced visible photocatalytic perfor-mance[J]. Chinese J. Inorg. Chem., 2023,39(4):699-708. doi: 10.11862/CJIC.2023.030

    10. [10]

      ZOU X, YAN Z R, TANG D F, FAN S C, PENG D L, JIANG Y L, WEI Q L. Intercalation pseudocapacitance of sodium-ion storage in TiO2(B)[J]. J. Mater. Chem. A, 2024,12:13770-13777. doi: 10.1039/D4TA02211D

    11. [11]

      CHAHKANDI M, ZARGAZI M, GHIASABADI B K, MOHAMMAD CHAHKANDI M M, GHIASABAD K B, CHUNG J S, YAZDI M K, SACB M R, BAGHAYERI M. Graphitic carbon nitride nanosheets decorated with HAp@Bi2S3 core-shell nanorods: Dual S-scheme 1D/2D heterojunction for environmental and hydrogen production solu-tions[J]. Chem. Eng. J., 2024,499155886. doi: 10.1016/j.cej.2024.155886

    12. [12]

      LIU X B, CHENG Z Y, LIN L Q, XU W T, CHEN S P, ZHUANG H Q. Fabrication of ternary Bi2S3/BiVO4/g-C3N4 composite material for enhanced photocatalytic degradation of antibiotics[J]. Diam. Relat. Mat., 2024,148111376. doi: 10.1016/j.diamond.2024.111376

    13. [13]

      WANG Y, WANG H H, WANG X Y, ZHANG J, WANG G Y, ZHANG X C. Facile synthesis of S-scheme Bi2S3/BiOCl heterojunc-tion with tunable bandgap structures for enhanced photocatalytic organic degradation performance[J]. Inorg. Chem. Commun., 2025,71113532.

    14. [14]

      DONG F, XIONG T, SUN Y J, ZHAO Z W, ZHOU Y, FENG X, WU Z B. A semimetal bismuth element as a direct plasmonic photocata-lyst[J]. Chem. Commun., 2014,50(72):10386-10389. doi: 10.1039/C4CC02724H

    15. [15]

      DONG F, ZHAO Z W, SUN Y J, ZHANG Y X, YAN S, WU Z B. An advanced semimetal-organic Bi spheres g-C3N4 nanohybrid with SPR-enhanced visible-light photocatalytic performance for NO purifica-tion[J]. Environ. Sci. Technol., 2015,49(20):12432-12440. doi: 10.1021/acs.est.5b03758

    16. [16]

      YANG J J, LI L, XIAO C, YI X. Dual-plasmon resonance coupling promoting directional photosynthesis of nitrate from air[J]. Angew. Chem.-Int. Edit., 2023,62(47)e202311911. doi: 10.1002/anie.202311911

    17. [17]

      DING J, LI C H, YIN H S, ZHOU Y L, WANG S, LIU K X, LI M A, WANG J. One-pot solvothermal synthesis of Bi/Bi2S3/Bi2WO6 S-scheme heterojunction with enhanced photoactivity towards antibiotic oxytetracycline degradation under visible light[J]. Environ. Pollut., 2023,327121550. doi: 10.1016/j.envpol.2023.121550

    18. [18]

      MA H, YUAN C C, WANG X M, WANG H J, LONG Y P, CHEN Y Q, WANG Q, CONG Y Q, ZHANG Y. Deposition of CeO2 on TiO2 nanorods electrode by dielectric barrier discharge plasma to enhance the photoelectrochemical performance in high chloride salt system[J]. Sep. Purif. Technol., 2021,276119252. doi: 10.1016/j.seppur.2021.119252

    19. [19]

      LI Y Y, DANG L Y, HAN L F, LI P P, WANG J S, LI Z J. Iodine-sensitized Bi 4Ti3O12/TiO2 photocatalyst with enhanced photocatalytic activity on degradation of phenol[J]. J. Mol. Catal. A-Chem., 2013,379(15):146-151.

    20. [20]

      XIE F X, MAO X M, FAN C M, WANG Y W. Facile preparation of Sn-doped BiOCl photocatalyst with enhanced photocatalytic activity for benzoic acid and rhodamine B degradation[J]. Mater. Sci. Semicond. Process, 2014,27:380-389. doi: 10.1016/j.mssp.2014.07.020

    21. [21]

      AI Z H, HO W K, LEE S C, ZANG L Z. Efficient photocatalytic removal of NO in indoor air with hierarchical bismuth oxybromide nanoplate microspheres under visible light[J]. Environ. Sci. Technol., 2009,43(11):4143-4150. doi: 10.1021/es9004366

    22. [22]

      NYHOLM R, BEMDTSSON A, MARTENSSON N. Core level bind-ing energies for the elements Hf to Bi (Z=72-83)[J]. J. Phys. C-Solid State Phys., 1980,13:L1091-L1096. doi: 10.1088/0022-3719/13/36/009

    23. [23]

      REN S C, YANG H M, ZHANG D D, GAO F F, NAN C, LI Z F, ZHOU W J, GAO N, LIANG Z H. Excellent performance of the pho-toelectrocatalytic CO2 reduction to formate by Bi2S3/ZIF-8 composite[J]. Appl. Surf. Sci., 2022,579152206. doi: 10.1016/j.apsusc.2021.152206

    24. [24]

      LONG L L, CHEN J J, ZHANG X, ZHANG A Y, HUANG Y X, RONG Q, YU H Q. Layer-controlled growth of MoS2 on self-assem-bled flower-like Bi 2S3 for enhanced photocatalysis under visible light irradiation[J]. NPG Asia Mater., 2016,8e263. doi: 10.1038/am.2016.46

    25. [25]

      CHEN J S, QIN S Y, SONG G X, XIANG T Y, FENG X F, YIN X H. Shape-controlled solvothermal synthesis of Bi2S3 for photocatalytic reduction of CO 2 to methyl formate in methanol[J]. Dalton Trans., 2013,42:15133-15138. doi: 10.1039/c3dt51887f

    26. [26]

      TOUDERT J, SERNA R, DE CASTRO M J. Exploring the optical po-tential of nano-bismuth: Tunable surface plasmon resonances in the near ultraviolet-to-near infrared range[J]. J. Phys. Chem. C, 2012,116(38):20530-20539. doi: 10.1021/jp3065882

    27. [27]

      XU F Y, ZHANG J J, ZHU B C, YU J G, XU J S. CuInS2 sensitized TiO2 hybrid nanofibers for improved photocatalytic CO2 reduction[J]. Appl. Catal. B-Environ, 2018,230:194-202. doi: 10.1016/j.apcatb.2018.02.042

    28. [28]

      ZHONG Y, MA Y Q, CHEN D M, FENG Y M, ZHANG W Y, SUN Y J, LV G C, ZHANG W B, ZHANG J Z, DING H. S-scheme hetero-junction for efficient photocatalytic peroxymonosulfate activation to boost Co(Ⅳ)=O generation[J]. Water Res., 2024,258121774. doi: 10.1016/j.watres.2024.121774

    29. [29]

      TU W W, ZHOU Y, ZOU Z G. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: State-of-the-art accomplishment, chal-lenges, and prospects[J]. Adv. Mater., 2014,26(27):4607-4626. doi: 10.1002/adma.201400087

  • 加载中
    1. [1]

      Yiting HuoXin ZhouFeifan ZhaoChenbin AiZhen WuZhidong ChangBicheng Zhu . Boosting photocatalytic CO2 methanation through TiO2/CdS S-scheme heterojunction and fs-TAS mechanism study. Acta Physico-Chimica Sinica, 2025, 41(11): 100148-0. doi: 10.1016/j.actphy.2025.100148

    2. [2]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    3. [3]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    4. [4]

      Yuejiao AnWenxuan LiuYanfeng ZhangJianjun ZhangZhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021

    5. [5]

      Deyun MaFenglan LiangQingquan XueYanping LiuChunqiang ZhuangShijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190

    6. [6]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    7. [7]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    8. [8]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    9. [9]

      Chunchun WangChangjun YouKe RongChuqi ShenFang YangShijie Li . An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ). Acta Physico-Chimica Sinica, 2024, 40(7): 2307045-0. doi: 10.3866/PKU.WHXB202307045

    10. [10]

      Jiali LeiJuan WangWenhui ZhangGuohong WangZihui LiangJinmao Li . TiO2/CdIn2S4 S-scheme heterojunction photocatalyst promotes photocatalytic hydrogen evolution coupled vanillyl alcohol oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100174-0. doi: 10.1016/j.actphy.2025.100174

    11. [11]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    12. [12]

      Ziyang LongQuanzheng LiChengliang ZhangHaifeng Shi . BiVO4/WO3-x S-scheme heterojunctions with amplified internal electric field for boosting photothermal-catalytic activity. Acta Physico-Chimica Sinica, 2025, 41(10): 100122-0. doi: 10.1016/j.actphy.2025.100122

    13. [13]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

    14. [14]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    15. [15]

      Jiaxing CaiWendi XuHaoqiang ChiQian LiuWa GaoLi ShiJingxiang LowZhigang ZouYong Zhou . Highly Efficient InOOH/ZnIn2S4 Hollow Sphere S-Scheme Heterojunction with 0D/2D Interface for Enhancing Photocatalytic CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-0. doi: 10.3866/PKU.WHXB202407002

    16. [16]

      Jinwang WuQijing XieChengliang ZhangHaifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050

    17. [17]

      Bowen LiuJianjun ZhangHan LiBei ChengChuanbiao Bie . MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation. Acta Physico-Chimica Sinica, 2025, 41(10): 100121-0. doi: 10.1016/j.actphy.2025.100121

    18. [18]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    19. [19]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    20. [20]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

Metrics
  • PDF Downloads(4)
  • Abstract views(1202)
  • HTML views(179)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return