Citation: Tian TIAN, Meng ZHOU, Jiale WEI, Yize LIU, Yifan MO, Yuhan YE, Wenzhi JIA, Bin HE. Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298 shu

Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property

  • Corresponding author: Bin HE, binhe@zjhu.edu.cn
  • Received Date: 7 August 2024
    Revised Date: 5 December 2024

Figures(9)

  • Binary composites (ZIF-67/rGO) were synthesized by one-step precipitation method using cobalt nitrate hexahydrate as metal source, 2-methylimidazole as organic ligand, and reduced graphene oxide (rGO) as carbon carrier. Then Ru3+ was introduced for ion exchange, and the porous Ru-doped Co3O4/rGO (Ru-Co3O4/rGO) composite electrocatalyst was prepared by annealing. The phase structure, morphology, and valence state of the catalyst were analyzed by X-ray powder diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). In 1 mol·L-1 KOH, the oxygen evolution reaction (OER) performance of the catalyst was measured by linear sweep voltammetry, cyclic voltammetry, and chronoamperometry. The results show that the combination of Ru doping and rGO provides a fast channel for collaborative electron transfer. At the same time, rGO as a carbon carrier can improve the electrical conductivity of Ru-Co3O4 particles, and the uniformly dispersed nanoparticles enable the reactants to diffuse freely on the catalyst. The results showed that the electrochemical performance of Ru-Co3O4/rGO was much better than that of Co3O4/rGO, and the overpotential of Ru-Co3O4/rGO was 363.5 mV at the current density of 50 mA·cm-2.
  • 加载中
    1. [1]

      HAN S M, MA Y, YUN Q B, WANG A L, ZHU Q S, ZHANG H, HE C H, XIA J, MENG X M, GAO L, CAO W B, LU Q P. The synergy of tensile strain and ligand effect in PtBi nanorings for boosting electrocatalytic alcohol oxidation[J]. Adv. Funct. Mater., 2022,32(48)2208760. doi: 10.1002/adfm.202208760

    2. [2]

      YU J, HE Q J, YANG G M, ZHOU W, SHAO Z P, NI M. Recent advances and perspective in ruthenium-based materials for electrochemical water splitting[J]. ACS Catal., 2019,9(11):9973-10011. doi: 10.1021/acscatal.9b02457

    3. [3]

      JIANG Y, XIE M, WU F, YE Z Q, ZHANG Y X, WANG Z H, ZHOU Y Z, LI L, CHEN R J. Cobalt selenide hollow polyhedron encapsulated in graphene for high-performance lithium/sodium storage[J]. Small, 2021,17(40)2102893. doi: 10.1002/smll.202102893

    4. [4]

      TAMILARASI B, JITHUL K, PANDEY J. Non-noble metal-based electro-catalyst for the oxygen evolution reaction (OER): Towards an active stable electro-catalyst for PEM water electrolysis[J]. Int. J. Hydrog. Energy, 2024,58:556-582. doi: 10.1016/j.ijhydene.2024.01.222

    5. [5]

      JIANG J, JIN B, MENG L. Research progress on nonprecious metal catalysts based on electrocatalytic oxygen evolution reaction[J]. J. Compos. Mater., 2023,40(3):1365-1380.

    6. [6]

      LI J X, ZHAO Y, XUE J J, HE P T, WANG L. Preparation and electrocatalytic property of cobalt sulfide/porous carbon composite catalyst derived from ZIF67[J]. Chinese J. Inorg. Chem., 2019,35(8):1363-1370.

    7. [7]

      ZHOU G Y, ZHANG S, ZHU Y F, LI J, SUN K, PANG H, ZHANG M Y, TANG Y W, XU L. Manipulating the rectifying contact between ultrafine Ru nanoclusters and N-doped carbon nanofibers for high-efficiency pH-universal electrocatalytic hydrogen evolution[J]. Small, 2023,192206781. doi: 10.1002/smll.202206781

    8. [8]

      HE Y, ZHANG Y, HE Q, LIU H, LI L. Metal-organic-frameworks-derived Co(OH)2/nitrogen-doped carbon graphene nanocomposites for high-performance supercapacitors[J]. Chinese J. Inorg. Chem., 2023,39(12):2432-2440. doi: 10.11862/CJIC.2023.192

    9. [9]

      LIU Y F, ZHANG Z, ZHU R M, QIU Z M, PANG H. A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction[J]. Chinese J. Inorg. Chem., 2024,40(5):979-990.

    10. [10]

      ZHANG H, MENG G, WEI T R, DING J Y, LIU Q, LUO J, LIU X J. Co-doping promotes the alkaline overall seawater electrolysis performance over MnPSe3 nanosheets[J]. Chem. Commun., 2023,59:12144-12147. doi: 10.1039/D3CC03434H

    11. [11]

      PENG Z M, ZHANG G, QI G C, ZHANG H, LIU Q, HU G Z, LUO J, LIU X J. Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting[J]. Chinese J. Struct. Chem., 2024,43100191. doi: 10.1016/j.cjsc.2023.100191

    12. [12]

      WANG T W, ZHANG Q, LIAN K, QI G C, LIU Q, FENG L, HU G Z, LUO J, LIU X J. Fe nanoparticles confined by multiple-heteroatom-doped carbon frameworks for aqueous Zn-air battery driving CO2 electrolysis[J]. J. Colloid Interface Sci., 2024,655:176-186. doi: 10.1016/j.jcis.2023.10.157

    13. [13]

      XU Y Y, DENG P L, CHEN G D, CHEN J X, YAN Y, QI K, LIU H F, XIA B Y. 2D nitrogen-doped carbon nanotubes/graphene hybrid as bifunctional oxygen electrocatalyst for long-life rechargeable Zn-air batteries[J]. Adv. Funct. Mater., 2020,30(6)1906081. doi: 10.1002/adfm.201906081

    14. [14]

      ZHOU G Y, WEI C, LI Z J, HE B, LIU Z Y, LI J. Fe doping and interface engineering-induced dual electronic regulation of CoSe2/Co9S8 nanorod arrays for enhanced electrochemical oxygen evolution[J]. Inorg. Chem. Front., 2024,11:164-171.

    15. [15]

      FENG T L, YU G T, TAO S Y, ZHU S J, KU R Q, ZHANG R, ZENG Q S, YANG M X, CHEN Y X, CHEN W H, CHEN W, YANG B. A highly efficient overall water-splitting ruthenium-cobalt alloy electrocatalyst across a wide pH range via electronic coupling with carbon dots[J]. J. Mater. Chem. A, 2020,8:9638-9645. doi: 10.1039/D0TA02496A

    16. [16]

      XU H T, ZHOU X Y, LIN X R, WU Y H, QIU H J. Electronic interaction between in situ formed RuO2 clusters and a nanoporous Zn3V3O8 support and its use in the oxygen evolution reaction[J]. ACS Appl. Mater. Interfaces, 2021,13(46):54951-54958. doi: 10.1021/acsami.1c15119

    17. [17]

      LI Y J, WANG X, ZHOU Y C. Ru loaded on NiFe layered double hydroxide nanosheet arrays for boosting alkaline electrocatalytic hydrogen evolution and oxygen evolution abilities[J]. Chinese J. Inorg. Chem., 2023,39(10):1905-1913.

    18. [18]

      LI H Y, ZHOU L, HAN B M, GU X Y, YE Q L, XU X T, WANG F, LI B. Hydrogen evolution performance of CoFeOx/MoO2 quasi-parallel nanoarray electrode[J]. Chinese J. Inorg. Chem., 2023,39(7):1275-1286.

    19. [19]

      YAN C S, CHEN G, ZHOU X, SUN J X, LV C D. Template-based engineering of carbon-doped Co3O4 hollow nanofibers as anode materials for lithium-ion batteries[J]. Adv. Funct. Mater., 2016,26:1428-1436. doi: 10.1002/adfm.201504695

    20. [20]

      MA L B, SHEN X P, ZHOU H, ZHU G X, CHEN K M. CoP nanoparticles deposited on reduced graphene oxide sheets as an active electrocatalyst for the hydrogen evolution reaction[J]. J. Mater. Chem. A, 2015,3:5337-5343. doi: 10.1039/C4TA06458E

    21. [21]

      HE B, SONG J J, LI H Q, LI Y B, TANG Y W, SU Z, HAO Q L. Construction of hollow MoS2@N-C nanotubes for lithium-ion batteries[J]. Vacuum, 2022,205111386. doi: 10.1016/j.vacuum.2022.111386

  • 加载中
    1. [1]

      Haoying ZHAILanzong WENWenjie LIAOQin LIWenjun ZHOUKun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320

    2. [2]

      Shaohua YANGNa'na GAOYaqiong GONG . Metal-organic framework-templated construction of FeOOH@CoMoO4/nickel foam heterostructure for enhanced oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2175-2185. doi: 10.11862/CJIC.20250218

    3. [3]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    4. [4]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    5. [5]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    6. [6]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    7. [7]

      Ruige ZHANGZhe ZHANGHe ZHENGZhan SHI . Recent advances of metal-organic frameworks for alkaline electrocatalytic oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2011-2028. doi: 10.11862/CJIC.20250185

    8. [8]

      Hongzhe GUOSen WANGLu YANGFucheng LIUJiongpeng ZHAOZhaoquan YAO . Highly selective acetylene capture by a pacs-type metal-organic framework constructed using metal-formate complexes as pore partition units. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2157-2164. doi: 10.11862/CJIC.20250179

    9. [9]

      Xinnan XIEBoyu ZHANGJianxun YANGYi ZHONGYounis OsamaJianxiao YANGXinchun YANG . Ultrafine platinum clusters achieved by metal-organic framework derived cobalt nanoparticle/porous carbon: Remarkable catalytic performance in dehydrogenation of ammonia borane. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2095-2102. doi: 10.11862/CJIC.20250025

    10. [10]

      Ruiyan CHENYanping HEJian ZHANG . Synthesis and third-order nonlinear optical property of Ti4L6 cage-based metal-organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2149-2156. doi: 10.11862/CJIC.20250177

    11. [11]

      Shanqing YANGLulu WANGQiang ZHANGJiajia LIYilong LITongliang HU . A propane-selective metal-organic framework for inverse selective adsorption propane/propylene separation. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2138-2148. doi: 10.11862/CJIC.20250154

    12. [12]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    13. [13]

      Yukun CHENKexin FENGBolun ZHANGWentao SONGJianjun ZHANG . Syntheses, crystal structures, and diametrically opposed mechanically-stimulated luminescence response of two Mg(Ⅱ) metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1227-1234. doi: 10.11862/CJIC.20240448

    14. [14]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    15. [15]

      Min ZHUYuxin WANGXiao LIYaxu XUJunwen ZHUZihao WANGYu ZHUXiaochen HUANGDan XUMonsur Showkot Hossain Abul . Construction of AgVO3/ZIF-8 composites for enhanced degradation of tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 994-1006. doi: 10.11862/CJIC.20240392

    16. [16]

      Ri PENGYingxiang BAIYuxin XIEDunru ZHUcis/trans-Octahedral configuration induced topologically different MOFs: Syntheses, structures, and Hirshfeld surface analyses. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1650-1660. doi: 10.11862/CJIC.20250143

    17. [17]

      Bangdi GEXiaowei SONGZhiqiang LIANG . A bifunctional three-dimensional Eu-MOF fluorescent probe for highly sensitive detection of 2, 4, 6-trinitrophenol and tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2165-2174. doi: 10.11862/CJIC.20250190

    18. [18]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    19. [19]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    20. [20]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

Metrics
  • PDF Downloads(2)
  • Abstract views(1629)
  • HTML views(182)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return