Citation: Zhiyuan TONG, Ziyuan LI, Ke ZHANG. Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238 shu

Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode

Figures(7)

  • Here, we have prepared a kind of anode current collector based on Li6.4La3Zr1.4Ta0.6O12 (LLZTO) solid electrolyte and copper composite layer with 3D porous structure by phase-transformation co-banding casting method, and the addition of LLZTO provides abundant ion transport channels and nucleation sites for lithium ions, while the copper with 3D porous structure provides enlarged specific surface area and can accommodate a large amount of dead lithium and other by-products generated in electrochemical process, and at the same time, the phase-transformation co-banding casting method is easy to operate and suitable for anode interface impedance increase. The prepared Cu-LLZTO@Li symmetric cell achieved a long cycle life of 280 h at a current density of 4 mA·cm-2 with an ultra-low voltage hysteresis of 25 mV, which was 4 times and 3 times higher than that of Cu foil and 3D-Cu, respectively. Thanks to the constructed stable solid electrolyte interphase (SEI) film and no lithium dendrite generation, the Cu-LLZTO@Li symmetric cell exhibited the lowest ohmic resistance (2.749 Ω·cm-2) and interface resistance (0.544 Ω·cm-2) compared to Cu foil@Li and 3D-Cu@Li. In the half-cell, Cu-LLZTO did not produce a soft short circuit and maintained 98.4% Coulombic efficiency over 70 cycles, and the charging and discharging voltage plateau was consistently maintained at a low level of 0.15 V during the cycle.
  • 加载中
    1. [1]

      XIA S X, YANG C W, JING Z Y, FAN W J, YUAN T, PANG Y P, SUN H, CHEN T Q, LI X, ZHENG S Y. Towards practical lithium metal batteries with composite scaffolded lithium metal: An overview[J]. Adv. Compos. Hybrid Mater., 2023, 6(6): 198  doi: 10.1007/s42114-023-00769-3

    2. [2]

      LIU B, ZHANG J G, XU W. Advancing lithium metal batteries[J]. Joule, 2018, 2(5): 833-845  doi: 10.1016/j.joule.2018.03.008

    3. [3]

      TANG W, YIN X S, CHEN Z X, FU W, LOH K P, ZHENG G W. Chemically polished lithium metal anode for high energy lithium metal batteries[J]. Energy Storage Mater., 2018, 14: 289-296  doi: 10.1016/j.ensm.2018.05.009

    4. [4]

      TANG W H, MA J Y, ZHANG X Q, LI Y J, MENG S Q, ZHANG Y L, DONG H Y, LIU R P, GAO R, FENG M. Interfacial strategies towards highly stable Li-metal anode of liquid-based Li-metal batteries[J]. Energy Storage Mater., 2024, 64: 103084  doi: 10.1016/j.ensm.2023.103084

    5. [5]

      CHEN X R, LI B Q, ZHU C, ZHANG R, CHENG X B, HUANG J Q, ZHANG Q. A coaxial-lnterweaved hybrid lithium metal anode for long-lifespan lithium metal batteries[J]. Adv. Energy Mater., 2019, 9(39): 1901932  doi: 10.1002/aenm.201901932

    6. [6]

      MARTIN C, GENOVESE M, LOULI A J, WEBER R, DAHN J R. Cycling lithium metal on graphite to form hybrid lithium-ion/lithium metal cells[J]. Joule, 2020, 4(6): 1296-1310  doi: 10.1016/j.joule.2020.04.003

    7. [7]

      GHAZI Z A, SUN Z H, SUN C G, QI F L, AN B G, LI F, Cheng H M. Key aspects of lithium metal anodes for lithium metal batteries[J]. Small, 2019, 15(32): 1900687  doi: 10.1002/smll.201900687

    8. [8]

      SHEN X, ZHANG R, SHI P, CHEN X, ZHANG Q. How does external pressure shape Li dendrites in Li metal batteries?[J]. Adv. Energy Mater., 2021, 11(10): 2003416  doi: 10.1002/aenm.202003416

    9. [9]

      ZACHMAN M J, TU Z Y, CHOUDHURY S, ARCHER L A, KOURKOUTIS L F. Cryo-STEM mapping of solid-liquid interfaces and dendrites in lithium-metal batteries[J]. Nature, 2018, 560(7718): 345-349  doi: 10.1038/s41586-018-0397-3

    10. [10]

      NING Z Y, LI G C, MELVIN D L R, CHEN Y, BU J F, SPENCER-JOLLY D, LIU J L, HU B K, GAO X W, PERERA J, GONG C, PU S D, ZHANG S M, LIU B Y, HARTLEY G O, BODEY A J, TODD R I, GRANT P S, ARMSTRONG D E J, MARROW T J, MONROE C W, BRUCE P G. Dendrite initiation and propagation in lithium metal solid-state batteries[J]. Nature, 2023, 618(7964): 287-293  doi: 10.1038/s41586-023-05970-4

    11. [11]

      LIU W, LIU P C, MITLIN D. Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes[J]. Adv. Energy Mater., 2020, 10(43): 2002297  doi: 10.1002/aenm.202002297

    12. [12]

      LI A J, LIAO X B, ZHANG H R, SHI L, WANG P Y, CHENG Q, BOROVILAS J, LI Z Y, HUANG W L, FU Z X, DONTIGNY M, ZAGHIB K, MYERS K, CHUAN X Y, CHEN X, YANG Y. Nacre-inspired composite electrolytes for load-bearing solid-state lithium-metal batteries[J]. Adv. Mater., 2020, 32(2): 1905517  doi: 10.1002/adma.201905517

    13. [13]

      ZHOU S Y, CHEN W X, SHI J, LI G, PEI F, LIU S G, YE S B, XIAO L P, WANG M S, WANG D, QIAO Y, HUANG L, XU G L, LIAO H G, CHEN J F, AMINE K, SUN S G. Efficient diffusion of superdense lithium via atomic channels for dendrite-free lithium-metal batteries[J]. Energy Environ. Sci., 2022, 15(1): 196-205  doi: 10.1039/D1EE02205A

    14. [14]

      HUO H Y, CHEN Y, LI R Y, ZHAO N, LUO J, DA SILVA J G P, MUECKE R, KAGHAZCHI P, GUO X X, SUN X L. Design of a mixed conductive garnet/Li interface for dendrite-free solid lithium metal batteries[J]. Energy Environ. Sci., 2020, 13(1): 127-134  doi: 10.1039/C9EE01903K

    15. [15]

      FU C Y, VENTURI V, KIM J, AHMAD Z, ELLS A W, VISWANATHAN V, HELMS B A. Universal chemomechanical design rules for solid-ion conductors to prevent dendrite formation in lithium metal batteries[J]. Nat. Mater., 2020, 19(7): 758-766  doi: 10.1038/s41563-020-0655-2

    16. [16]

      TANG Y F, ZHANG L Q, CHEN J Z, SUN H M, YANG T T, LIU Q N, HUANG Q, ZHU T, HUANG J Y. Electro-chemo-mechanics of lithium in solid state lithium metal batteries[J]. Energy Environ. Sci., 2021, 14(2): 602-642  doi: 10.1039/D0EE02525A

    17. [17]

      CHENG X B, ZHANG R, ZHAO C Z, ZHANG Q. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chem. Rev., 2017, 117(15): 10403-10473  doi: 10.1021/acs.chemrev.7b00115

    18. [18]

      LI F Q, SUN Z, YIN S, LIU S L, ZHANG Z L, LIU F Y. Novel LLZTO@Ag composite layer for the stable anode of sulfide all-solid-state lithium battery[J]. Chin. J. Eng., 2023, 45(11): 1928-1938

    19. [19]

      ZHU J G, LI P K, CHEN X, LEGUT D, FAN Y C, ZHANG R F, LU Y Y, CHENG X B, ZHANG Q F. Rational design of graphitic-inorganic Bi-layer artificial SEI for stable lithium metal anode[J]. Energy Storage Mater., 2019, 16: 426-433  doi: 10.1016/j.ensm.2018.06.023

    20. [20]

      LEE Y G, FUJIKI S, JUNG C, SUZUKI N, YASHIRO N, OMODA R, KO D, SHIRATSUCHI T, SUGIMOTO T, RYU S, KU J H, WATANABE T, PARK Y, AIHARA Y, IM D, HAN I T. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes[J]. Nat. Energy, 2020, 5(4): 299-308  doi: 10.1038/s41560-020-0575-z

    21. [21]

      BRISSOT C, ROSSO M, CHAZALVIEL J N, BAUDRY P, LASCAUD S. In situ study of dendritic growth inlithium/PEO-salt/lithium cells[J]. Electrochim. Acta, 1998, 43(10): 1569-1574

    22. [22]

      CHAZALVIEL J N. Electrochemical aspects of the generation of ramified metallic electrodeposits[J]. Phys. Rev. A, 1990, 42(12): 7355-7367  doi: 10.1103/PhysRevA.42.7355

    23. [23]

      LI N R, JIA T Q, LIU Y R, OUYANG Y F, LV Y, ZHONG G, WANG Y F, SUN B, LU S R, HUANG S F, KANG F Y, CAO Y D. Super-three-dimensional lithiophilic Cu-based current collector for anode-free lithium metal battery[J]. Mater. Today Energy, 2023, 36: 101341  doi: 10.1016/j.mtener.2023.101341

    24. [24]

      CHEN C L, LI S P, NOTTEN P H L, ZHANG Y H, HAO Q L, ZHANG X G, LEI W. 3D printed lithium-metal full batteries based on a high-performance three-dimensional anode current collector[J]. ACS Appl. Mater. Interfaces, 2021, 13(21): 24785-24794  doi: 10.1021/acsami.1c03997

    25. [25]

      KIM J M, JIA H, KOIRALA K P, LIU D Y, SIMMONS A, ENGELHARD M H, AHMED R A, ZHANG Y P, WANG C M, ZHANG J G, XU W. Three-dimensional polymeric-scaffold-based current collector for a lithium metal anode toward high-energy-density batteries[J]. ACS Energy Lett., 2024, 9(3): 919-926  doi: 10.1021/acsenergylett.3c02752

    26. [26]

      LIU C C, WU B R, ZHANG Y X, LIU T, CUI J W, HUANG L J, TAN G Q, ZHANG L, SU Y F, WU F. Dense cuprous oxide sheath decorated three-dimensional copper foam enabling stable lithium metal anodes[J]. J. Mater. Chem. A, 2023, 11(46): 25455-25464  doi: 10.1039/D3TA04259F

    27. [27]

      JIANG L M, LIU Z F, TANG J, ZHANG L, SHI K, TIAN Z Q, LIU P K, SUN L N, TIAN Z W. Three-dimensional micro-fabrication on copper and nickel[J]. J. Electroanal. Chem., 2005, 581(2): 153-158  doi: 10.1016/j.jelechem.2004.11.041

    28. [28]

      ZHOU B X, BONAKDARPOUR A, STOŠEVSKI I, FANG B Z, WIKINSON D P. Modification of Cu current collectors for lithium metal batteries—A review[J]. Prog. Mater. Sci., 2022, 130: 100996  doi: 10.1016/j.pmatsci.2022.100996

    29. [29]

      ZHANG H L, LIU S M, KANG W, HUANG Z Z, HU G Z, WANG S R. Application of phase inversion method in solid oxide fuel cells[J]. J. Ceram., 2020, 41(6): 796-806

    30. [30]

      BIEKER G, WINTER M, BIEKER P. Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode[J]. Phys. Chem. Chem. Phys., 2015, 17(14): 8670-8679  doi: 10.1039/C4CP05865H

    31. [31]

      YUAN H, DAI H F, WEI X Z, MING P W. Internal polarization process revelation of electrochemical impedance spectroscopy of proton exchange membrane fuel cell by an impedance dimension model and distribution of relaxation times[J]. Chem. Eng. J., 2021, 418: 129358  doi: 10.1016/j.cej.2021.129358

  • 加载中
    1. [1]

      Zeyu LiuWenze HuangYang XiaoJundong ZhangWeijin KongPeng WuChenzi ZhaoAibing ChenQiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040

    2. [2]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    3. [3]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    4. [4]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    5. [5]

      Zhi DouHuiyu DuanYixi LinYinghui XiaMingbo ZhengZhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039

    6. [6]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    7. [7]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    8. [8]

      Da WangXiaobin YinJianfang WuYaqiao LuoSiqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029

    9. [9]

      Jiandong LiuZhijia ZhangKamenskii MikhailVolkov FilippEliseeva SvetlanaJianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2308048-0. doi: 10.3866/PKU.WHXB202308048

    10. [10]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    11. [11]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    12. [12]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    13. [13]

      Hao ChenDongyue YangGang HuangXinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059

    14. [14]

      Bowen YangRui WangBenjian XinLili LiuZhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2310024-0. doi: 10.3866/PKU.WHXB202310024

    15. [15]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    16. [16]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    17. [17]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    18. [18]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    19. [19]

      Yan'e LIUShengli JIAYifan JIANGQinghua ZHAOYi LIXinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054

    20. [20]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

Metrics
  • PDF Downloads(6)
  • Abstract views(958)
  • HTML views(119)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return