Citation: Ran HUO, Zhaohui ZHANG, Xi SU, Long CHEN. Research progress on multivariate two dimensional conjugated metal organic frameworks[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195 shu

Research progress on multivariate two dimensional conjugated metal organic frameworks

  • Received Date: 27 May 2024
    Revised Date: 22 August 2024

Figures(8)

  • Multivariate two-dimensional conjugated metal-organic frameworks (MTV 2D c-MOFs) represent a novel class of porous crystalline materials constructed by coordinating multiple organic ligands and metal nodes. These advantages include predictable topology, tunable porosity, high conductivity, and high electrocatalytic activity, making them widely applicable in electrocatalysis, energy storage, and gas sensing. By leveraging the synergistic effects of multiple metal ions or organic ligands, the electrochemical activity and selectivity of MTV 2D c-MOFs can be efficiently optimized, resulting in superior conductivity and catalytic performance compared to traditional two-component 2D c-MOFs. In this mini-review, we first outline several common construction strategies for MTV 2D c-MOFs and provide a detailed comparison with two-component 2D c-MOFs. In addition, we discuss the promising application prospects of MTV 2D c-MOFs across various fields. Finally, we address the current challenges hindering the development of MTV 2D c-MOFs, highlighting directions for future research and improvement.
  • 加载中
    1. [1]

      Qi M L, Zhou Y, Lv Y K, Chen W B, Su X, Zhang T, Xing G L, Xu G, Terasaki O, Chen L. Direct construction of 2D conductive metal-organic frameworks from a nonplanar ligand: In situ Scholl reaction and topological modulation[J]. J. Am. Chem. Soc., 2023,145:2739-2744.

    2. [2]

      Qiu S L, Zhu G S. Molecular engineering for synthesizing novel structures of metal-organic frameworks with multifunctional properties[J]. Coord. Chem. Rev., 2009,253:2891-2911.

    3. [3]

      Zhang X, Chen Z J, Liu X Y, Hanna S L, Wang X J, Taheri-Ledari R, Maleki A, Li P, Farha O K. A historical overview of the activation and porosity of metal-organic frameworks[J]. Chem. Soc. Rev., 2020,49:7406-7427.

    4. [4]

      Ghasempour H, Wang K Y, Powell J A, ZareKarizi F, Lv X L, Morsali A, Zhou H C. Metal-organic frameworks based on multicarboxylate linkers[J]. Coord. Chem. Rev., 2021,426213542.

    5. [5]

      Deng H X, Doonan C J, Furukawa H, Ferreira R B, Towne J, Knobler C B, Wang B, Yaghi O M. Multiple functional groups of varying ratios in metal-organic frameworks[J]. Science, 2010,327:846-850.

    6. [6]

      Trickett C A, Helal A, Bassem A, Maythalony A, Yamani Z H, Cordova K E, Yaghi O M. The chemistry of metal-organic frameworks for CO2 capture, regeneration and conversion[J]. Nat. Rev. Mater., 2017,4:296-312.

    7. [7]

      Gao J K, Qian X F, Lin R B, Krishna R, Wu H, Zhou W, Chen B L. Mixed metal-organic framework with multiple binding sites for efficient C2H2/CO2 separation[J]. Angew. Chem. Int. Ed., 2020,59:4396-4400.

    8. [8]

      Liu L Z, Yao Z Z, Ye Y X, Yang Y K, Lin Q J, Zhang Z J, O'Keeffe M, Xiang S C. Integrating the pillared-layer strategy and pore-space partition method to construct multicomponent MOFs for C2H2/CO2 separation[J]. J. Am. Chem. Soc., 2020,42:9258-9266.

    9. [9]

      Chumillas M V, Liu X Y, Leyva-Pérez A, Armentano D, Ferrando-Soria J, Pardo D. Mixed component metal-organic frameworks: Hetero-geneity and complexity at the service of application performances[J]. Coord. Chem. Rev., 2022,451214273.

    10. [10]

      McDaniel J G, Yu K, Schmidt J R. Microscopic origins of enhanced gas adsorption and selectivity in mixed-linker metal-organic frame-works[J]. J. Phys. Chem. C, 2013,117:17131-17142.

    11. [11]

      Jiang H L, Feng D W, Liu T F, Li J R, Zhou H C. Pore surface engineering with controlled loadings of functional groups via click chemistry in highly stable metal-organic frameworks[J]. J. Am. Chem. Soc., 2012,134:14690-14693.

    12. [12]

      Yang J, Yan X, Xue T, Liu Y. Enhanced CO2 adsorption on Al-MIL-53 by introducing hydroxyl groups into the framework[J]. RSC Adv., 2016,6:55266-55271.

    13. [13]

      Liu J J, Song X Y, Zhang T, Liu S Y, Wen H R, Chen L. 2D conductive metal-organic frameworks: an emerging platform for electrochemical energy storage[J]. Angew. Chem. Int. Ed., 2021,60:5612-5624.

    14. [14]

      Xing G L, Liu J J, Zhou Y, Fu S, Zheng J J, Su X, Gao X F, Terasaki O, Bonn M, Wang H I, Chen L. Conjugated nonplanar copper-catecholate conductive metal-organic frameworks via contorted hexabenzocoronene ligands for electrical conduction[J]. J. Am. Chem. Soc., 2023,145(16):8979-8987.

    15. [15]

      Wang M C, Dong R H, Feng X L. Two-dimensional conjugated metal-organic frameworks (2D c-MOFs): Chemistry and function for MOFtronics[J]. Chem. Soc. Rev., 2021,50:2764-2793.

    16. [16]

      Sun L, Hendon C H, Park S S, Tulchinsky Y, Wan R, Wang F, Walsh A, Dinca M. Is iron unique in promoting electrical conductivity in MOFs?[J]. Chem Sci., 2017,8:4450-4457.

    17. [17]

      Park J G, Aubrey M L, Oktawiec J, Chakarawet K, Darago L E, Grandjean F, Long G J, Long J R. Charge delocalization and bulk electronic conductivity in the mixed-valence metal-organic frame-work Fe(1, 2, 3-triazolate)2(BF4)x[J]. J. Am. Chem. Soc., 2018,140:8526-8534.

    18. [18]

      Yang C Q, Dong R H, Wang M, Petkov P S, Zhang Z T, Wang M C, Han P, Ballabio M, Bräuninger S A, Liao Z Q, Zhang J C, Schwotzer F, Zschech E, Klauss H, Cánovas E, Kaskel S, Bonn M, Zhou S Q, Heine T, Feng X L. A semiconducting layered metal-organic frame-work magnet[J]. Nat. Commun., 2019,10:3260-3269.

    19. [19]

      Park J, Hinckley A C, Huang Z H, Feng D W, Yakovenko A A, Lee M, Chen S C, Zou X D, Bao Z N. Synthetic routes for a 2D semiconductive copper hexahydroxybenzene metal-organic framework[J]. J.Am. Chem. Soc., 2018,140:14533-14537.

    20. [20]

      Liu J J, Zhou Y, Xie Z, Li Y, Liu Y P, Sun J, Ma Y H, Terasaki O, Chen L. Conjugated copper-catecholate framework electrodes for efficient energy storage[J]. Angew. Chem. Int. Ed., 2020,59:1081-1086.

    21. [21]

      Clough A J, Orchanian N M, Skelton S K, Neer A J, Howard A S, Downes A C, Piper L F G, Walsh A, Melot B C, Marinescu S C. Room temperature metallic conductivity in a metal-organic frame-work induced by oxidation[J]. J. Am. Chem. Soc., 2019,141:16323-16330.

    22. [22]

      Clough A J, Yoo J W, Mecklenburg M H, Marinescu S C. Two-dimensional metal-organic surfaces for efficient hydrogen evolution from water[J]. J. Am. Chem. Soc., 2015,137:118-121.

    23. [23]

      Liu J J, Yang D, Zhou Y, Zhang G, Xing G L, Liu Y P, Ma Y H, Terasaki O, Yang S B, Chen L. Tricycloquinazoline-based 2D conductive metal-organic frameworks promising electrocatalysts for CO2 reduction[J]. Angew. Chem. Int. Ed., 2021,60:14473-14479.

    24. [24]

      Feng D W, Lei T, Lukatskaya M R, Park J, Huang Z H, Lee M, Shaw L, Chen S C, Yakovenko A, Kulkarni A, Xiao J P, Fredrickson K, Tok J B, Zou X D, Cui Y, Bao Z N. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance[J]. Nat. Energy, 2018,3:30-36.

    25. [25]

      Yao M S, Zheng J J, Wu A Q, Xu G, Nagarkar S, Zhang G, Tsujimoto M, Sakaki S, Horike S, Otake S, Kitagawa S. A dual-ligand porous coordination polymer chemiresistor with modulated conductivity and porosity[J]. Angew. Chem. Int. Ed., 2020,59:172-176.

    26. [26]

      Yao M S, Lv X J, Fu Z H, Li W H, Deng W H, Wu G D, Xu G. Layer-by-layer assembled conductive metal-organic framework nanofilms for room-temperature chemiresistive sensing[J]. Angew. Chem. Int. Ed., 2017,56:16510-16514.

    27. [27]

      Campbell M G, Sheberla D, Liu S F, Swager T M, Dincǎ M. Cu3 (hexaiminotriphenylene)2: An electrically conductive 2D metal-organic framework for chemiresistive sensing[J]. Angew. Chem. Int.Ed., 2015,54:4349-4352.

    28. [28]

      Campbell M G, Liu S F, Swager T M, Dincǎ M. Chemiresistive sensor arrays from conductive 2D metal-organic frameworks[J]. J. Am.Chem. Soc., 2015,137:13780-13783.

    29. [29]

      Choi Y, Wang M Y, Check B, Stodolka M, Tayman K, Sharma S, Park J. Linker-based bandgap tuning in conductive MOF solid solutions[J]. Small, 2023,192206988.

    30. [30]

      Dong R H, Zheng Z K, Tranca D C, Zhang J, Chandrasekhar N, Liu S H, Zhuang X D, Seifert G, Feng X L. Immobilizing molecular metal dithiolene-diamine complexes on 2D metal-organic frame-works for electrocatalytic H2 production[J]. Chem.-Eur. J., 2017,23(2):255-2260.

    31. [31]

      Lee S J, Telfer S G. Multicomponent metal-organic frameworks[J]. Angew. Chem. Int. Ed., 2023,62e202306341.

    32. [32]

      Wang Y M, Ning G H, Li D. Multifunctional metal-organic frameworks as catalysts for tandem reactions[J]. Chem.-Eur. J., 2024e202400360.

    33. [33]

      Chen L Y, Wang H F, Li C X, Xu Q. Bimetallic metal-organic frame-works and their derivatives[J]. Chem. Sci., 2020,11:5369-5403.

    34. [34]

      Chen T Y, Dou J H, Yang L M, Sun C Y, Libretto N J, Skorupskii G, Miller J T, Dinca M. Continuous electrical conductivity variation in M3(hexaiminotriphenylene)2 (M=Co, Ni, Cu) MOF alloys[J]. J. Am.Chem. Soc., 2020,142:12367-12373.

    35. [35]

      Lian Y B, Yang W J, Zhang C F, Sun H, Deng Z, Xu W J, Song L, Ouyang Z W, Wang Z X, Guo J, Peng Y. Unpaired 3d electrons on atomically dispersed cobalt centres in coordination polymers regulate both oxygen reduction reaction (ORR) activity and selectivity for use in zinc-air batteries[J]. Angew. Chem. Int. Ed., 2020,59:286-294.

    36. [36]

      Yoon H J, Lee S, Oh S J, Park H J, Choi S, Oh M Y. Synthesis of bimetallic conductive 2D metal-organic framework (CoxNiy-CAT) and its mass production: Enhanced electrochemical oxygen reduction activity[J]. Small, 2019,151805232.

    37. [37]

      Zhao Z H, Huang J R, Liao P Q, Chen X M. Highly efficient electroreduction of CO2 to ethanol via asymmetric C—C coupling by a metal-organic framework with heterodimetal dual sites[J]. J. Am. Chem. Soc., 2023,145:26783-26790.

    38. [38]

      Zhong H X, Ghorbani-Asl M, Ly K H, Zhang J C, Ge J, Wang M C, Liao Z Q, Makarov D, Zschech E, Brunner E, Weidinger I M, Zhang J, Krasheninnikov A V, Kaskel S, Dong R H, Feng X L. Synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal-organic frameworks[J]. Nat. Commun., 2020,11:1409-1419.

    39. [39]

      Pang L Y, Jia X, Wang P, Wang Y L, Yang Y H, Liu H. Bimetallic synergy boost TCPP(Ni)-Co MOF as the high-performance electrochemical sensor for enhanced detection of trace theophylline[J]. Microchem. J., 2022,183107981.

  • 加载中
    1. [1]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    2. [2]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    3. [3]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    4. [4]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    5. [5]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    6. [6]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    7. [7]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    8. [8]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    9. [9]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    10. [10]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    11. [11]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    12. [12]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    13. [13]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    14. [14]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    15. [15]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    16. [16]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    17. [17]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    18. [18]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    19. [19]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    20. [20]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

Metrics
  • PDF Downloads(31)
  • Abstract views(1643)
  • HTML views(344)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return