Citation:
Ran HUO, Zhaohui ZHANG, Xi SU, Long CHEN. Research progress on multivariate two dimensional conjugated metal organic frameworks[J]. Chinese Journal of Inorganic Chemistry,
;2024, 40(11): 2063-2074.
doi:
10.11862/CJIC.20240195
-
Multivariate two-dimensional conjugated metal-organic frameworks (MTV 2D c-MOFs) represent a novel class of porous crystalline materials constructed by coordinating multiple organic ligands and metal nodes. These advantages include predictable topology, tunable porosity, high conductivity, and high electrocatalytic activity, making them widely applicable in electrocatalysis, energy storage, and gas sensing. By leveraging the synergistic effects of multiple metal ions or organic ligands, the electrochemical activity and selectivity of MTV 2D c-MOFs can be efficiently optimized, resulting in superior conductivity and catalytic performance compared to traditional two-component 2D c-MOFs. In this mini-review, we first outline several common construction strategies for MTV 2D c-MOFs and provide a detailed comparison with two-component 2D c-MOFs. In addition, we discuss the promising application prospects of MTV 2D c-MOFs across various fields. Finally, we address the current challenges hindering the development of MTV 2D c-MOFs, highlighting directions for future research and improvement.
-
-
-
[1]
Qi M L, Zhou Y, Lv Y K, Chen W B, Su X, Zhang T, Xing G L, Xu G, Terasaki O, Chen L. Direct construction of 2D conductive metal-organic frameworks from a nonplanar ligand: In situ Scholl reaction and topological modulation[J]. J. Am. Chem. Soc., 2023,145:2739-2744.
-
[2]
Qiu S L, Zhu G S. Molecular engineering for synthesizing novel structures of metal-organic frameworks with multifunctional properties[J]. Coord. Chem. Rev., 2009,253:2891-2911.
-
[3]
Zhang X, Chen Z J, Liu X Y, Hanna S L, Wang X J, Taheri-Ledari R, Maleki A, Li P, Farha O K. A historical overview of the activation and porosity of metal-organic frameworks[J]. Chem. Soc. Rev., 2020,49:7406-7427.
-
[4]
Ghasempour H, Wang K Y, Powell J A, ZareKarizi F, Lv X L, Morsali A, Zhou H C. Metal-organic frameworks based on multicarboxylate linkers[J]. Coord. Chem. Rev., 2021,426213542.
-
[5]
Deng H X, Doonan C J, Furukawa H, Ferreira R B, Towne J, Knobler C B, Wang B, Yaghi O M. Multiple functional groups of varying ratios in metal-organic frameworks[J]. Science, 2010,327:846-850.
-
[6]
Trickett C A, Helal A, Bassem A, Maythalony A, Yamani Z H, Cordova K E, Yaghi O M. The chemistry of metal-organic frameworks for CO2 capture, regeneration and conversion[J]. Nat. Rev. Mater., 2017,4:296-312.
-
[7]
Gao J K, Qian X F, Lin R B, Krishna R, Wu H, Zhou W, Chen B L. Mixed metal-organic framework with multiple binding sites for efficient C2H2/CO2 separation[J]. Angew. Chem. Int. Ed., 2020,59:4396-4400.
-
[8]
Liu L Z, Yao Z Z, Ye Y X, Yang Y K, Lin Q J, Zhang Z J, O'Keeffe M, Xiang S C. Integrating the pillared-layer strategy and pore-space partition method to construct multicomponent MOFs for C2H2/CO2 separation[J]. J. Am. Chem. Soc., 2020,42:9258-9266.
-
[9]
Chumillas M V, Liu X Y, Leyva-Pérez A, Armentano D, Ferrando-Soria J, Pardo D. Mixed component metal-organic frameworks: Hetero-geneity and complexity at the service of application performances[J]. Coord. Chem. Rev., 2022,451214273.
-
[10]
McDaniel J G, Yu K, Schmidt J R. Microscopic origins of enhanced gas adsorption and selectivity in mixed-linker metal-organic frame-works[J]. J. Phys. Chem. C, 2013,117:17131-17142.
-
[11]
Jiang H L, Feng D W, Liu T F, Li J R, Zhou H C. Pore surface engineering with controlled loadings of functional groups via click chemistry in highly stable metal-organic frameworks[J]. J. Am. Chem. Soc., 2012,134:14690-14693.
-
[12]
Yang J, Yan X, Xue T, Liu Y. Enhanced CO2 adsorption on Al-MIL-53 by introducing hydroxyl groups into the framework[J]. RSC Adv., 2016,6:55266-55271.
-
[13]
Liu J J, Song X Y, Zhang T, Liu S Y, Wen H R, Chen L. 2D conductive metal-organic frameworks: an emerging platform for electrochemical energy storage[J]. Angew. Chem. Int. Ed., 2021,60:5612-5624.
-
[14]
Xing G L, Liu J J, Zhou Y, Fu S, Zheng J J, Su X, Gao X F, Terasaki O, Bonn M, Wang H I, Chen L. Conjugated nonplanar copper-catecholate conductive metal-organic frameworks via contorted hexabenzocoronene ligands for electrical conduction[J]. J. Am. Chem. Soc., 2023,145(16):8979-8987.
-
[15]
Wang M C, Dong R H, Feng X L. Two-dimensional conjugated metal-organic frameworks (2D c-MOFs): Chemistry and function for MOFtronics[J]. Chem. Soc. Rev., 2021,50:2764-2793.
-
[16]
Sun L, Hendon C H, Park S S, Tulchinsky Y, Wan R, Wang F, Walsh A, Dinca M. Is iron unique in promoting electrical conductivity in MOFs?[J]. Chem Sci., 2017,8:4450-4457.
-
[17]
Park J G, Aubrey M L, Oktawiec J, Chakarawet K, Darago L E, Grandjean F, Long G J, Long J R. Charge delocalization and bulk electronic conductivity in the mixed-valence metal-organic frame-work Fe(1, 2, 3-triazolate)2(BF4)x[J]. J. Am. Chem. Soc., 2018,140:8526-8534.
-
[18]
Yang C Q, Dong R H, Wang M, Petkov P S, Zhang Z T, Wang M C, Han P, Ballabio M, Bräuninger S A, Liao Z Q, Zhang J C, Schwotzer F, Zschech E, Klauss H, Cánovas E, Kaskel S, Bonn M, Zhou S Q, Heine T, Feng X L. A semiconducting layered metal-organic frame-work magnet[J]. Nat. Commun., 2019,10:3260-3269.
-
[19]
Park J, Hinckley A C, Huang Z H, Feng D W, Yakovenko A A, Lee M, Chen S C, Zou X D, Bao Z N. Synthetic routes for a 2D semiconductive copper hexahydroxybenzene metal-organic framework[J]. J.Am. Chem. Soc., 2018,140:14533-14537.
-
[20]
Liu J J, Zhou Y, Xie Z, Li Y, Liu Y P, Sun J, Ma Y H, Terasaki O, Chen L. Conjugated copper-catecholate framework electrodes for efficient energy storage[J]. Angew. Chem. Int. Ed., 2020,59:1081-1086.
-
[21]
Clough A J, Orchanian N M, Skelton S K, Neer A J, Howard A S, Downes A C, Piper L F G, Walsh A, Melot B C, Marinescu S C. Room temperature metallic conductivity in a metal-organic frame-work induced by oxidation[J]. J. Am. Chem. Soc., 2019,141:16323-16330.
-
[22]
Clough A J, Yoo J W, Mecklenburg M H, Marinescu S C. Two-dimensional metal-organic surfaces for efficient hydrogen evolution from water[J]. J. Am. Chem. Soc., 2015,137:118-121.
-
[23]
Liu J J, Yang D, Zhou Y, Zhang G, Xing G L, Liu Y P, Ma Y H, Terasaki O, Yang S B, Chen L. Tricycloquinazoline-based 2D conductive metal-organic frameworks promising electrocatalysts for CO2 reduction[J]. Angew. Chem. Int. Ed., 2021,60:14473-14479.
-
[24]
Feng D W, Lei T, Lukatskaya M R, Park J, Huang Z H, Lee M, Shaw L, Chen S C, Yakovenko A, Kulkarni A, Xiao J P, Fredrickson K, Tok J B, Zou X D, Cui Y, Bao Z N. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance[J]. Nat. Energy, 2018,3:30-36.
-
[25]
Yao M S, Zheng J J, Wu A Q, Xu G, Nagarkar S, Zhang G, Tsujimoto M, Sakaki S, Horike S, Otake S, Kitagawa S. A dual-ligand porous coordination polymer chemiresistor with modulated conductivity and porosity[J]. Angew. Chem. Int. Ed., 2020,59:172-176.
-
[26]
Yao M S, Lv X J, Fu Z H, Li W H, Deng W H, Wu G D, Xu G. Layer-by-layer assembled conductive metal-organic framework nanofilms for room-temperature chemiresistive sensing[J]. Angew. Chem. Int. Ed., 2017,56:16510-16514.
-
[27]
Campbell M G, Sheberla D, Liu S F, Swager T M, Dincǎ M. Cu3 (hexaiminotriphenylene)2: An electrically conductive 2D metal-organic framework for chemiresistive sensing[J]. Angew. Chem. Int.Ed., 2015,54:4349-4352.
-
[28]
Campbell M G, Liu S F, Swager T M, Dincǎ M. Chemiresistive sensor arrays from conductive 2D metal-organic frameworks[J]. J. Am.Chem. Soc., 2015,137:13780-13783.
-
[29]
Choi Y, Wang M Y, Check B, Stodolka M, Tayman K, Sharma S, Park J. Linker-based bandgap tuning in conductive MOF solid solutions[J]. Small, 2023,192206988.
-
[30]
Dong R H, Zheng Z K, Tranca D C, Zhang J, Chandrasekhar N, Liu S H, Zhuang X D, Seifert G, Feng X L. Immobilizing molecular metal dithiolene-diamine complexes on 2D metal-organic frame-works for electrocatalytic H2 production[J]. Chem.-Eur. J., 2017,23(2):255-2260.
-
[31]
Lee S J, Telfer S G. Multicomponent metal-organic frameworks[J]. Angew. Chem. Int. Ed., 2023,62e202306341.
-
[32]
Wang Y M, Ning G H, Li D. Multifunctional metal-organic frameworks as catalysts for tandem reactions[J]. Chem.-Eur. J., 2024e202400360.
-
[33]
Chen L Y, Wang H F, Li C X, Xu Q. Bimetallic metal-organic frame-works and their derivatives[J]. Chem. Sci., 2020,11:5369-5403.
-
[34]
Chen T Y, Dou J H, Yang L M, Sun C Y, Libretto N J, Skorupskii G, Miller J T, Dinca M. Continuous electrical conductivity variation in M3(hexaiminotriphenylene)2 (M=Co, Ni, Cu) MOF alloys[J]. J. Am.Chem. Soc., 2020,142:12367-12373.
-
[35]
Lian Y B, Yang W J, Zhang C F, Sun H, Deng Z, Xu W J, Song L, Ouyang Z W, Wang Z X, Guo J, Peng Y. Unpaired 3d electrons on atomically dispersed cobalt centres in coordination polymers regulate both oxygen reduction reaction (ORR) activity and selectivity for use in zinc-air batteries[J]. Angew. Chem. Int. Ed., 2020,59:286-294.
-
[36]
Yoon H J, Lee S, Oh S J, Park H J, Choi S, Oh M Y. Synthesis of bimetallic conductive 2D metal-organic framework (CoxNiy-CAT) and its mass production: Enhanced electrochemical oxygen reduction activity[J]. Small, 2019,151805232.
-
[37]
Zhao Z H, Huang J R, Liao P Q, Chen X M. Highly efficient electroreduction of CO2 to ethanol via asymmetric C—C coupling by a metal-organic framework with heterodimetal dual sites[J]. J. Am. Chem. Soc., 2023,145:26783-26790.
-
[38]
Zhong H X, Ghorbani-Asl M, Ly K H, Zhang J C, Ge J, Wang M C, Liao Z Q, Makarov D, Zschech E, Brunner E, Weidinger I M, Zhang J, Krasheninnikov A V, Kaskel S, Dong R H, Feng X L. Synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal-organic frameworks[J]. Nat. Commun., 2020,11:1409-1419.
-
[39]
Pang L Y, Jia X, Wang P, Wang Y L, Yang Y H, Liu H. Bimetallic synergy boost TCPP(Ni)-Co MOF as the high-performance electrochemical sensor for enhanced detection of trace theophylline[J]. Microchem. J., 2022,183107981.
-
[1]
-
-
-
[1]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[2]
Ye Wang , Ruixiang Ge , Xiang Liu , Jing Li , Haohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019
-
[3]
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
-
[4]
Xinlong XU , Chunxue JING , Yuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046
-
[5]
Lu Zhuoran , Li Shengkai , Lu Yuxuan , Wang Shuangyin , Zou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003
-
[6]
Wentao Xu , Xuyan Mo , Yang Zhou , Zuxian Weng , Kunling Mo , Yanhua Wu , Xinlin Jiang , Dan Li , Tangqi Lan , Huan Wen , Fuqin Zheng , Youjun Fan , Wei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003
-
[7]
Ruizhi Duan , Xiaomei Wang , Panwang Zhou , Yang Liu , Can Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111
-
[8]
Tao Wang , Qin Dong , Cunpu Li , Zidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061
-
[9]
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
-
[10]
Jianchun Wang , Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082
-
[11]
Xueting Cao , Shuangshuang Cha , Ming Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041
-
[12]
Xinyi Zhang , Kai Ren , Yanning Liu , Zhenyi Gu , Zhixiong Huang , Shuohang Zheng , Xiaotong Wang , Jinzhi Guo , Igor V. Zatovsky , Junming Cao , Xinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057
-
[13]
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
-
[14]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[15]
Xiting Zhou , Zhipeng Han , Xinlei Zhang , Shixuan Zhu , Cheng Che , Liang Xu , Zhenyu Sun , Leiduan Hao , Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070
-
[16]
Jiayu Tang , Jichuan Pang , Shaohua Xiao , Xinhua Xu , Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021
-
[17]
Qing Li , Guangxun Zhang , Yuxia Xu , Yangyang Sun , Huan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045
-
[18]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012
-
[19]
Ru SONG , Biao WANG , Chunling LU , Bingbing NIU , Dongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397
-
[20]
Yanhui Guo , Li Wei , Zhonglin Wen , Chaorong Qi , Huanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004
-
[1]
Metrics
- PDF Downloads(31)
- Abstract views(1643)
- HTML views(344)