Citation: Xiaoning TANG, Junnan LIU, Xingfu YANG, Jie LEI, Qiuyang LUO, Shu XIA, An XUE. Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191 shu

Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes

Figures(5)

  • Abstract: Here, we propose a green and self-crosslinking strategy to in-situ prepare a sodium carboxymethylcellulose (CMC) and sodium alginate (SA) layer on the Zn electrode (Zn@SA+CMC) via the superionic bonds between the carboxylate groups and Zn2+. Scanning electron microscopy (SEM) images confirm a porous structure of the SA+CMC layer. The functional effects of the gel layer are as follows. Firstly, the layer is rich in hydroxyl groups, which can be tightly adsorbed onto the Zn anode surface to form a protective layer and separate the Zn anode from the electrolyte. Secondly, the protective layer is a gel film, making it mechanically flexible, which can accommodate the volume change during Zn plating. Thirdly, the SA+CMC gel layer possesses zincophilicity, reduces interfacial resistance, lowers the nucleation energy barrier, and increases ionic conductivity, thereby promoting uniform Zn deposition and effectively inhibiting dendritic growth. As a result, the Zn@SA+CMC symmetrical cell sustained over 890 h of long-term stability at a high current density of 3 mA·cm-2 and the Zn@SA+CMC half cell could provide as high a Coulombic efficiency of 99.8% over 3 700 h (1 850 cycles). Furthermore, the Zn@SA+CMC||MnO2 full cell delivered a specific capacity of 185.1 mAh·g-1 at 0.3 A·g-1, maintaining stability for over 1 200 cycles.
  • 加载中
    1. [1]

      Liu J N, Luo Q Y, Xia S, Yang X F, Lei J, Sun Q, Chen X H, Shao J J, Tang X N, Zhou G M. A Cu-Ag double-layer coating strategy for stable and reversible Zn metal anodes[J]. J. Colloid Interf. Sci., 2024,665:163-171. doi: 10.1016/j.jcis.2024.03.126

    2. [2]

      Lu H Y, Hu J S, Wei X J, Zhang K Q, Xiao X, Zhao J X, Hu Q, Yu J, Zhou G M, Xu B G. A recyclable biomass electrolyte towards green zinc-ion batteries[J]. Nat. Commun., 2023,1(14)4435.

    3. [3]

      Li Y M, Wang Z W, Li W H, Zhang X Y, Yin C, Li K, Guo W, Zhang J P. Trinary nanogradients at electrode/electrolyte interface for lean zinc metal batteries[J]. Energy Storage Mater., 2023,61102873. doi: 10.1016/j.ensm.2023.102873

    4. [4]

      Yang Z F, Hu C, Zhang Q, Wu T Q, Xie C L, Wang H, Tang Y G, Ji X B, Wang H Y. Bulk-phase reconstruction enables robust zinc metal anodes for aqueous zinc-ion batteries[J]. Angew. Chem. Int. Ed., 2023,35(62)e202308017.

    5. [5]

      Cui H L, Zhang D C, Wu Z X, Zhe J X, Li P, Li C, Hou Y, Zhang R, Wang X Q, Jin X, Bai S C, Zhi C Y. Tailoring hydroxyl groups of organic phenazine anodes for high-performance and stable alkaline batteries[J]. Energy Environ. Sci., 2024,1(17):114-122.

    6. [6]

      Deng Y Q, Wang H F, Fan M H, Zhan B X, Zuo L J, Chen C, Yan L F. Nanomicellar electrolyte to control release ions and reconstruct hydrogen bonding network for ultrastable high-energy-density Zn-Mn battery[J]. J. Am. Chem. Soc., 2023,36(145):20109-20120.

    7. [7]

      Li Y, Peng X Y, Li X, Duan H, Xie S Y, Dong L B, Kang F Y. Functional ultrathin separators proactively stabilizing zinc anodes for zinc-based energy storage[J]. Adv. Mater., 2023,18(35)2300019.

    8. [8]

      Zheng Z Y, Guo S J, Yan M Y, Luo Y Z, Cao F F. A functional Janus Ag nanowires/bacterial cellulose separator for high‑performance dendrite-free zinc anode under harsh conditions[J]. Adv. Mater., 2023,47(35)2304667.

    9. [9]

      Xia S, Luo Q Y, Liu J N, Yang X F, Lei J, Shao J J, Tang X N. In situ spontaneous construction of zinc phosphate coating layer toward highly reversible zinc metal anodes[J]. Small, 2024. doi: 10.1002/smll.202310497

    10. [10]

      Luo Q Y, Xia S, Liu J N, Yang X F, Lei J, Shi Y, Chen X H, Shao J J, Tang X N, Zhou G M. In situ constructing a porous organic component-zincophilic Cu clusters layer on zinc anode for high performance aqueous zinc ion batteries[J]. Chem. Eng. J., 2024,494152789. doi: 10.1016/j.cej.2024.152789

    11. [11]

      Dong H B, Hu X Y, Liu R R, Ouyang M Z, He H Z, Wang T L, Gao X, Dai Y H, Zhang W, Liu Y Y, Zhou Y Q, He G J. Bio-inspired polyanionic electrolytes for highly stable zinc-ion batteries[J]. Angew. Chem. Int. Ed., 2023,41(62)e202311268.

    12. [12]

      Kim H J, Kim S, Heo K, Lim J H, Yashiro H, Myung S T. Nature of zinc-derived dendrite and its suppression in mildly acidic aqueous zinc-ion battery[J]. Adv. Energy Mater., 2022,2(13)2203189.

    13. [13]

      Liu J X, Song W H, Wang Y L, Wang S Z, Zhang T R, Cao Y L, Zhang S G, Xu C C, Shi Y Z, Niu J, Wang F. A polyamino acid with zincophilic chains enabling high-performance Zn anodes[J]. J. Mater. Chem. A, 2022,39(10):20779-20786.

    14. [14]

      Zheng J X, Wu Y C, Xie H X, Zeng Y, Liu W Q, Gandi A N, Qi Z B, Wang Z C, Liang H F. In situ alloying sites anchored on an amorphous aluminum nitride matrix for crystallographic reorientation of zinc deposits[J]. ACS Nano, 2023,1(17):337-345.

    15. [15]

      Han D L, Wu S, Zhang S, Deng Y, Cui C, Zhang L, Long Y, Li H, Tao Y, Weng Z, Yang Q H, Kang F. A corrosion-resistant and dendrite-free zinc metal anode in aqueous systems[J]. Small, 2020,29(16)2001736.

    16. [16]

      Wang L Y, Huang W W, Guo W B, Guo Z H, Chang C Y, Gao L, Pu X. Sn alloying to inhibit hydrogen evolution of Zn metal anode in rechargeable aqueous batteries[J]. Adv. Funct. Mater., 2021,1(32)2108533.

    17. [17]

      Li B, Xue J, Lv X, Zhang R C, Ma K X, Wu X W, Dai L, Wang L, He Z X. A facile coating strategy for high stability aqueous zinc ion batteries: Porous rutile nano-TiO2 coating on zinc anode[J]. Surf. Coat. Technol., 2021,421127367. doi: 10.1016/j.surfcoat.2021.127367

    18. [18]

      Yang Y, Liu C Y, Lv Z H, Yang H, Zhang Y F, Ye M H, Chen L B, Zhao J B, Li C C. Synergistic manipulation of Zn2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF2 matrix for long-lifespan and dendrite-free Zn metal anodes[J]. Adv. Mater., 2021,11(33)2007388.

    19. [19]

      Li R T, Du Y X, Li Y H, He Z X, Dai L, Wang L, Wu X W, Zhang J J, Yi J. Alloying strategy for high-performance zinc metal anodes[J]. ACS Energy Lett., 2022,1(8):457-476.

    20. [20]

      Du J W, Zhao Y R, Chu X Y, Wang G, Neumann C, Xu H, Li X D, Löffler M, Lu Q Q, Zhang J X. A high-energy tellurium redox‑ amphoteric conversion cathode chemistry for aqueous zinc batteries[J]. Adv. Mater., 2024,36(19)2313621. doi: 10.1002/adma.202313621

    21. [21]

      Hieu L T, So S, Kim I T, Hur J. Zn anode with flexible β-PVDF coating for aqueous Zn-ion batteries with long cycle life[J]. Chem. Eng. J., 2021,411128584. doi: 10.1016/j.cej.2021.128584

    22. [22]

      Cao Q H, Gao Y, Pu J, Zhao X, Wang Y X, Chen J P, Guan C. Gradient design of imprinted anode for stable Zn-ion batteries[J]. Nat. Commun., 2023,1(14)641.

    23. [23]

      Qin Y, Li H F, Han C P, Mo F N, Wang X. Chemical welding of the electrode-electrolyte interface by Zn-metal-initiated in situ gelation for ultralong-life Zn-ion batteries[J]. Adv. Mater., 2022,44(34)2207118.

    24. [24]

      Liu H Y, Ye Q, Lei D, Hou Z D, Hua W, Huyan Y, Li N, Wei C G, Kang F Y, Wang J G. Molecular brush: An ion-redistributor to homogenize fast Zn2+ flux and deposition for calendar-life Zn batteries[J]. Energy Environ. Sci., 2023,4(16):1610-1619.

    25. [25]

      Zhu J B, Bie Z, Cai X X, Jiao Z Y, Wang Z T, Tao J C, Song W X, Fan H J. A molecular-sieve electrolyte membrane enables separator-free zinc batteries with ultralong cycle life[J]. Adv. Mater., 2022,43(34)2207209.

    26. [26]

      Wang Z, VahidMohammadi A, Ouyang L, Erlandsson J, Tai C W, Wågberg L, Hamedi M M. Layer-by-layer self-assembled nanostructured electrodes for lithium-ion batteries[J]. Small, 2020,6(17)2006434.

    27. [27]

      Dong X, Peng Y, Wang Y, Wang H W, Jiang C M, Huang C, Meng C G, Zhang Y. Hemimorphite/C interface layer with dual‑effect methodically redistricted Zn2+ deposition behavior for dendrite-free zinc metal anodes[J]. Energy Storage Mater., 2023,62102937. doi: 10.1016/j.ensm.2023.102937

    28. [28]

      Liu Q Q, Xia C F, He C H, Guo W, Wu Z P, Li Z, Zhao Q, Xia B Y. Dual-network structured hydrogel electrolytes engaged solid-state rechargeable Zn-air/iodide hybrid batteries[J]. Angew. Chem. Int. Ed., 2022,44(61)e202210567.

    29. [29]

      Tian C, Wang J L, Sun R X, Ali T, Wang H F, Xie B B, Zhong Y J, Hu Y. Improved interfacial ion migration and deposition through the chain-liquid synergistic effect by a carboxylated hydrogel electrolyte for stable zinc metal anodes[J]. Angew. Chem. Int. Ed., 2023,42(62)e202310970.

    30. [30]

      Peng H L, Wang C T, Wang D D, Song X X, Zhang C H, Yang J. Dynamic Zn/electrolyte interphase and enhanced cation transfer of sol electrolyte for all-climate aqueous zinc metal batteries[J]. Angew. Chem. Int. Ed., 2023,34(62)e202308068.

    31. [31]

      Tian Y, An Y L, Yang Y J, Xu B G. Robust nitrogen/selenium engineered MXene/ZnSe hierarchical multifunctional interfaces for dendrite-free zinc-metal batteries[J]. Energy Storage Mater., 2022,49:122-134. doi: 10.1016/j.ensm.2022.03.045

    32. [32]

      Meng Q, Zhao R Y, Cao P H, Bai Q X, Tang J J, Liu G D, Zhou X Y, Yang J. Stabilization of Zn anode via a multifunctional cysteine additive[J]. Chem. Eng. J., 2022,447137471. doi: 10.1016/j.cej.2022.137471

    33. [33]

      Duan J W, Dong J M, Cao R R, Yang H, Fang K K, Liu Y, Shen Z T, Li F M, Liu R, Li H L, Chen C. Regulated Zn plating and stripping by a multifunctional polymer-alloy interphase layer for stable Zn metal anode[J]. Adv. Sci., 2023,29(10)2303343.

    34. [34]

      Liu M Y, Yuan W T, Ma G Q, Qiu K Y, Nie X Y, Liu Y C, Shen S G, Zhang N. In-situ integration of a hydrophobic and fast-Zn2+-conductive inorganic interphase to stabilize Zn metal anodes[J]. Angew. Chem. Int. Ed., 2023,62e202304444. doi: 10.1002/anie.202304444

    35. [35]

      Cheng Y, Jiao Y C, Wu P Y. Manipulating Zn 002 deposition plane with zirconium ion crosslinked hydrogel electrolyte toward dendrite free Zn metal anodes[J]. Energy Environ. Sci., 2023,10(16):4561-4571.

    36. [36]

      Qiu T Y, Wang T H, Tang W S, Li Y Q, Li Y G, Lang X Y, Jiang Q, Tan H Q. Rapidly synthesized single-ion conductive hydrogel electrolyte for high-performance quasi-solid-state zinc-ion batteries[J]. Angew. Chem. Int. Ed., 2023,135e202312020. doi: 10.1002/ange.202312020

    37. [37]

      Sun M, Ji G C, Zheng J P. A hydrogel electrolyte with ultrahigh ionic conductivity and transference number benefit from Zn2+ "highways" for dendrite-free Zn-MnO2 battery[J]. Chem. Eng. J., 2023,463142535. doi: 10.1016/j.cej.2023.142535

    38. [38]

      Tian Y D, Chen S, Ding S Y, Chen Q W, Zhang J T. A highly conductive gel electrolyte with favorable ion transfer channels for long-lived zinc-iodine batteries[J]. Chem. Sci., 2023,2(14):331-337.

    39. [39]

      Gou L, Li J R, Liang K, Zhao S P, Li D L, Fan X Y. Bi-MOF modulating MnO2 deposition enables ultra-stable cathode-free aqueous zinc-ion batteries[J]. Small, 2023,17(19)2208233.

    40. [40]

      Mathew V, Sambandam B, Kim S, Kim S, Park S, Lee S, Alfaruqi M H, Soundharrajan V, Islam S, Putro D Y, Hwang J Y, Sun Y K, Kim J. Manganese and vanadium oxide cathodes for aqueous rechargeable zinc-ion batteries: A focused view on performance, mechanism, and developments[J]. ACS Energy Lett., 2020,7(5):2376-2400.

    41. [41]

      Wang S, Zhao X Q, Chen H, Guo J D, Liu R X, Yang D A. Ammonium ion pre-intercalated manganese dioxide with hydrogen bond for high-rate and stable zinc-ion batteries[J]. EcoMat, 2022,6(4)e12249.

  • 加载中
    1. [1]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    2. [2]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    3. [3]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    4. [4]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    5. [5]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    6. [6]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    7. [7]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    8. [8]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    9. [9]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    10. [10]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    11. [11]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    12. [12]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    13. [13]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    14. [14]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    15. [15]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    16. [16]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    17. [17]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    18. [18]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    19. [19]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    20. [20]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

Metrics
  • PDF Downloads(2)
  • Abstract views(230)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return