Citation: Ning DING, Siyu WANG, Shihua YU, Pengcheng XU, Dandan HAN, Dexin SHI, Chao ZHANG. Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146 shu

Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors

Figures(7)

  • Crystalline@amorphous NiCo2S4@MoS2 (v-NCS@MS) nanostructures were designed and constructed via an ethylene glycol-induced strategy with hydrothermal synthesis and solvothermal method, which simultaneously realized the defect regulation of crystal NiCo2S4 in the core. Taking advantage of the flexible protection of an amor-phous shell and the high capacity of a conductive core with defects, the v-NCS@MS electrode exhibited high specific capacity (1 034 mAh·g-1 at 1 A·g-1) and outstanding rate capability. Moreover, a hybrid supercapacitor was assembled with v-NCS@MS as cathode and activated carbon (AC) as anode, which can achieve remarkably high specific energy of 111 Wh·kg-1 at a specific power of 219 W·kg-1 and outstanding capacity retention of 80.5% after 15 000 cycling at different current densities.
  • 加载中
    1. [1]

      Zhang Y, Mei H X, Cao Y, Yan X H, Yan J, Gao H L, Luo H W, Wang S W, Jia X D, Kachalova L, Yang J, Xue S C, Zhou C G, Wang L X, Gui Y H. Recent advances and challenges of electrode materials for flexible supercapacitors[J]. Coord. Chem. Rev., 2021,438213910. doi: 10.1016/j.ccr.2021.213910

    2. [2]

      Karthikeyan K, Parthiban P, Sindhuja M, Noor U H L A, Sang-Jae K. Recent trends, challenges, and perspectives in piezoelectric-driven self-chargeable electrochemical supercapacitors[J]. Carbon Energy, 2022,4(3):833-855.

    3. [3]

      Panicker N J, Dutta J C, Sahu P P. Confined growth of NiCo2S4 on 2D/2D porous carbon self-repairing g-C3N4/rGO heterostructure for enhanced performance of asymmetric supercapacitors[J]. Chem. Eng. J., 2023,463142376. doi: 10.1016/j.cej.2023.142376

    4. [4]

      Cai Y Q, Chen X G, Xu Y, Zhang Y L, Liu H J, Zhang H J, Tang J. Ti3C2Tx MXene/carbon composites for advanced supercapacitors: Synthesis, progress, and perspectives[J]. Carbon Energy, 2024,6(2):501-531. doi: 10.1002/cey2.501

    5. [5]

      Dong D, Xiao Y. Recent progress and challenges in coal-derived porous carbon for supercapacitor applications[J]. Chem. Eng. J., 2023,470144441. doi: 10.1016/j.cej.2023.144441

    6. [6]

      Huang J, Xie Y P, You Y, Yuan J L, Xu Q Q, Xie H B, Chen Y W. Rational design of electrode materials for advanced supercapacitors: From lab research to commercialization[J]. Adv. Funct. Mater., 2023,33(14)2213095. doi: 10.1002/adfm.202213095

    7. [7]

      Huang Z X, Zhang X L, Zhao X X, Lv H Y, Zhang X Y, Heng Y L, Geng H B, Wu X L. Suppressing oxygen redox in layered oxide cathode of sodium-ion batteries with ribbon superstructure and solid-solution behavior[J]. J. Mater. Sci. Technol., 2023,160:9-17. doi: 10.1016/j.jmst.2023.04.002

    8. [8]

      Lee J H, Yang G J, Kim C H, Mahajan R L, Lee S Y, Park S J. Flexible solid-state hybrid supercapacitors for the internet of everything (IoE)[J]. Energy Environ. Sci., 2022,15:2233-2258. doi: 10.1039/D1EE03567C

    9. [9]

      Guo J Z, Gu Z Y, Du M, Zhao X X, Wang X T, Wu X L. Emerging characterization techniques for delving polyanion-type cathode materials of sodium-ion batteries[J]. Mater. Today, 2023,66:221-244. doi: 10.1016/j.mattod.2023.03.020

    10. [10]

      Guo H, Qiao M, Yan J F, Jiang L, Yu J C, Li J Q, Deng S F, Qu L T. Fabrication of hybrid supercapacitor by MoCl5 precursor-assisted carbonization with ultrafast laser for improved capacitance performance[J]. Adv. Funct. Mater., 2023,33(23)2213514. doi: 10.1002/adfm.202213514

    11. [11]

      Tue L N M, Sahoo S, Dhakal G, Nguyen V H, Lee J, Lee Y R, Shim J J. NiCo2S4/MoS2 nanocomposites for long-life high-performance hybrid supercapacitors[J]. Nanomaterials, 2023,13(4):689-702. doi: 10.3390/nano13040689

    12. [12]

      Huang Z X, Zhan X L, Zhao X X, Heng Y L, Wang T, Geng H B, Wu X L. Hollow Na0.62K0.05Mn0.7Ni0.2Co0.1O2 polyhedra with exposed stable {001} facets and K riveting for sodium-ion batteries[J]. Sci China Mater., 2023,66(1):79-87. doi: 10.1007/s40843-022-2157-8

    13. [13]

      Greenacre V K, Levason W, Reid G, Smith D E. Coordination complexes and applications of transition metal sulfide and selenide halides[J]. Coord. Chem. Rev., 2020,424:213512-213527. doi: 10.1016/j.ccr.2020.213512

    14. [14]

      Wang K B, Chen C Y, Li Y H, Hong Y, Wu H, Zhang C, Zhang Q C. Insight into electrochemical performance of nitrogen-doped carbon/NiCo-alloy active nanocomposites[J]. Small, 2023,19(23)2300054. doi: 10.1002/smll.202300054

    15. [15]

      Gao D Y, Pan Y F, Wei J H, Han D D, Xu P C, Wei Y, Mao L C, Yin X H. Interfacial engineering in amorphous/crystalline heterogeneous nanostructures as a highly effective battery-type electrode for hybrid supercapacitors[J]. J. Mater. Chem. A, 2022,10:11186-11195. doi: 10.1039/D2TA00689H

    16. [16]

      Han X Y, Li J E, Lu J L, Luo S, Wan J, Li B X, Hu C G, Cheng X L. High mass-loading NiCo-LDH nanosheet arrays grown on carbon cloth by electrodeposition for excellent electrochemical energy storage[J]. Nano Energy, 2021,86106079. doi: 10.1016/j.nanoen.2021.106079

    17. [17]

      Nwaji N, Kang H, Goddati M, Tufa L T, Gwak J, Sharan A, Singh N, Lee J. Sulphur vacancy induced Co3S4@CoMo2S4 nanocomposites as a functional electrode for high performance supercapacitors[J]. J. Mater. Chem. A, 2023,11:3640-3652. doi: 10.1039/D2TA08820G

    18. [18]

      Hou J F, Gao J F, Kong L B. Enhanced rate and specific capacity in nanorod-like core-shell crystalline NiMoO4@amorphous cobalt boride materials enabled by Mott-Schottky heterostructure as positive electrode for hybrid supercapacitors[J]. J. Energy Chem., 2023,85:276-287. doi: 10.1016/j.jechem.2023.06.023

    19. [19]

      Ye J H, Chen L, Shi Y L, Hou J, Kong W W, Gu T T, Jiang R, Wang L P, Luo Y, Guo X H. Crystalline-amorphous hybrid CoNiO2 nanowires with enhanced capacity and energy density for aqueous zinc-ion hybrid supercapacitors[J]. ACS Appl. Nano Mater., 2021,4(11):12345-12352.

    20. [20]

      Jiang J, Hu Y L, He X R, Li Z P, Li F, Chen X, Niu Y, Song J, Huang P, Tian G Y, Wang C. An amorphous-crystalline nanosheet arrays structure for ultrahigh electrochemical performance supercapattery[J]. Small, 2021,17(41)2102565. doi: 10.1002/smll.202102565

    21. [21]

      Huang C, Gao A M, Yi F Y, Wang Y C, Shu D, Liang Y S, Zhu Z H, Ling J Z, Hao J N. Metal organic framework derived hollow NiS@C with S-vacancies to boost high-performance supercapacitors[J]. Chem. Eng. J., 2021,419129643. doi: 10.1016/j.cej.2021.129643

    22. [22]

      Zhou S W, Chiang C L, Zhao J Q, Cheng G J, Bashir T, Yin W J, Yao J Y, Yang S Q, Li W Y, Wang J Q, Wang X Y, Lin Y G, Gao L J. Extra storage capacity enabled by structural defects in pseudocapacitive NbN monocrystals for high-energy hybrid supercapacitors[J]. Adv. Funct. Mater., 2022,32(22)2112592. doi: 10.1002/adfm.202112592

    23. [23]

      Lin J L, Sun Y W, He R, Li Y X, Zhong Z C, Gao P, Zhao X, Zhang Z D, Wang Z J. Colossal room-temperature ferroelectric polarizations in SrTiO3/SrRuO3 superlattices induced by oxygen vacancies[J]. Nano Lett., 2022,22(17):7104-7111. doi: 10.1021/acs.nanolett.2c02175

    24. [24]

      Zong W, Lai F L, He G J, Feng J R, Wang W, Lian R Q, Miao Y E, Wang G C, Parkin I P, Liu T X. Sulfur-deficient bismuth sulfide/ nitrogen-doped carbon nanofibers as advanced free-standing electrode for asymmetric supercapacitors[J]. Small, 2018,14(32)1801562. doi: 10.1002/smll.201801562

    25. [25]

      Silva B J B, Sousa L V, Sarmento L R A, Carvalho R P, Quintela P H L, Pacheco J G A, Fréty R, Silva A O S. Effect of desilication on the textural properties, acidity and catalytic activity of zeolite ZSM-23 synthesized with different structure-directing agents[J]. Microporous Mesoporous Mater., 2019,290109647. doi: 10.1016/j.micromeso.2019.109647

    26. [26]

      Sun Y S, Wang Y, Wang C X, Wang J H, Wang Z H, Zhang M H, Zong H W, Xu J T, Liu J Q. Construction of Co9S8@NiCo2S4 core-shell hetero-nanostructure with synergistic effect of abundant mesopores and multi-metallic elements for novel high-performance flexible hybrid supercapacitors[J]. Chem. Eng. J., 2023,469143812. doi: 10.1016/j.cej.2023.143812

    27. [27]

      Sun Z X, Sun L J, Koh S W, Ge J Y, Fei J P, Yao M Q, Hong W, Liu S D, Yamauchi Y, Li H. Photovoltaic-powered supercapacitors for driving overallwater splitting: A dual-modulated 3D architecture[J]. Carbon Energy, 2022,4(6):1262-1273. doi: 10.1002/cey2.213

    28. [28]

      Guo X L, Liu Z M, Liu F, Zhang J, Zheng L K, Hu Y C, Mao J, Liu H, Xue Y M, Tang C C. Sulfur vacancies-tailored NiCo2S4 nanosheet arrays for hydrogen evolution reaction at all pH values[J]. Catal. Sci. Technol., 2020,10:1056-1065. doi: 10.1039/C9CY02189B

    29. [29]

      Chen X, Tao H J, Jiang Y H, Li S S, Liu Y X, Xie K, Wang Y Q. P-doped S vacancy-rich NiCo2S4 hollow microspheres for high-performance supercapacitors[J]. J. Energy Storage, 2023,68107721. doi: 10.1016/j.est.2023.107721

    30. [30]

      Liu S D, Kang L, Hu J S, Jung E, Henzie J, Alowasheeir A, Zhang J, Miao L, Yamauchi Y, Jun S C. Realizing superior redox kinetics of hollow bimetallic sulfide nanoarchitectures by defect-induced manipulation toward flexible solid-state supercapacitors[J]. Small, 2022,18(5)2104507. doi: 10.1002/smll.202104507

    31. [31]

      Tang Z B, Dai J G, Wei W K, Gao Z, Liang Z X, Wu C Z, Zeng B R, Xu Y T, Chen G R, Luo W A, Yuan C H, Dai L Z. In situ generation of ultrathin MoS2 nanosheets in carbon matrix for high energy density photo-responsive supercapacitors[J]. Adv. Sci., 2022,9(24)2201685. doi: 10.1002/advs.202201685

    32. [32]

      Zheng S Q, Lim S S, Foo C Y, Haw C Y, Chiu W S, Chia C H, Khiew P S. Fabrication of sodium and MoS2 incorporated NiO and carbon nanostructures for advanced supercapacitor application[J]. J. Energy Storage, 2023,63106980. doi: 10.1016/j.est.2023.106980

    33. [33]

      Pi X H, Sun X X, Wang R Q, Chen C L, Wu S B, Zhan F R, Zhong J B, Wang Q, Ostrikov K K. MoS2 nanosheets on plasma-nitrogen-doped carbon cloth for high-performance flexible supercapacitors[J]. J. Colloid. Interf. Sci., 2023,629:227-237. doi: 10.1016/j.jcis.2022.09.033

    34. [34]

      Maity C K, De S, Panigrahi A, Acharya S, Verma K, Kim M J, Nayak G C. Aerosol derived carbon dots decorated boron nitride supported Zn-doped MoS2 for high performing flexible asymmetric supercapacitor[J]. Compos. Pt. B-Eng., 2023,264110887. doi: 10.1016/j.compositesb.2023.110887

    35. [35]

      Li H, Li H, Wu Z Q, Zhu L L, Li C D, Lin S, Zhu X B, Sun Y P. Realization of high-purity 1T-MoS2 by hydrothermal synthesis through synergistic effect of nitric acid and ethanol for supercapacitors[J]. J. Mater. Sci. Technol., 2022,123:34-40. doi: 10.1016/j.jmst.2022.01.018

    36. [36]

      Kanaujiy N, Kumar N, Singh M, Sharma Y, Varma G D. CoMn2O4 nanoparticles decorated on 2D MoS2 frame: A synergetic energy storage composite material for practical supercapacitor applications[J]. J. Energy Storage, 2021,35102302. doi: 10.1016/j.est.2021.102302

    37. [37]

      Chen S J, Xiang Z P, Xiao Z Y, Wang K P, Zhang Q, Wang L. Dual-ion pre-inserted Mo glycerate template for constructing NiMo-OS core-shell structure with boosting performance in zinc ions hybrid supercapacitors[J]. Nano Res., 2023,16:6922-6932. doi: 10.1007/s12274-023-5468-6

    38. [38]

      Wang H, Shu T, Lin C X, Sun F, Wang Z Y, Lin B, Wei F X, Yao K X, Qi J Q, Sui Y W. Hierarchical construction of Co3S4 nanosheet coated by 2D multi-layer MoS2 as an electrode for high performance supercapacitor[J]. Appl. Surf. Sci., 2022,578151897. doi: 10.1016/j.apsusc.2021.151897

    39. [39]

      Xu X Y, Wei T, Xiong R, Zhang Z N, Zhang X J, Qiao S L, Li Q, Hu Y Q. Ammonium fluoride regulated CoMoS4-derived Co9S8@MoS2 composite for high-performance hybrid supercapacitor[J]. Surf. Coat. Tech., 2021,413127085. doi: 10.1016/j.surfcoat.2021.127085

    40. [40]

      Wan L, Liu J X, Li X, Zhang Y, Chen J, Du C, Xie M J. Fabrication of core-shell NiMoO4@MoS2 nanorods for high-performance asymmetric hybrid supercapacitors[J]. Int. J. Hydrogen Energy, 2020,45(7):4521-4533. doi: 10.1016/j.ijhydene.2019.12.057

    41. [41]

      Wang D Z, Zhu W L, Yuan Y, Du G, Zhu J L, Zhu X H, Pezzotti G. Kelp-like structured NiCo2S4-C-MoS2 composite electrodes for high performance supercapacitor[J]. J. Alloy. Compd., 2018,735:1505-1513. doi: 10.1016/j.jallcom.2017.11.249

    42. [42]

      Jiang M H, Wang Y, Xiang C L, Zou Y J, Xu F, Sun L X, Cai D, Shen C Y. Core-shell structured MnxCoyO4@MoS2 composites for advanced electrodes in supercapacitors[J]. J. Alloy. Compd., 2023,942169125. doi: 10.1016/j.jallcom.2023.169125

    43. [43]

      Zhao Y, Wang S C, Yuan M, Chen Y, Huang Y P, Lian J B, Yang S L, Li H M, Wu L M. Amorphous MoSx nanoparticles grown on cobalt-iron-based needle-like array for high-performance flexible asymmetric supercapacitor[J]. Chem. Eng. J., 2021,417127927. doi: 10.1016/j.cej.2020.127927

    44. [44]

      Javed M S, Zhang X F, Ali S, Shah S S A, Ahmad A, Hussain I, Hussain S, Khan S, Ouladsmane M, ElDin S M T, Arifeen W U, Han W H. Boosting the energy storage performance of aqueous NH4+ symmetric supercapacitor based on the nanostructured molybdenum disulfide nanosheets[J]. Chem. Eng. J., 2023,471144486. doi: 10.1016/j.cej.2023.144486

    45. [45]

      Rosli N H A, Lau K S, Winie T, Chin S X, Zakaria S, Chia C H. Rapid microwave synthesis of molybdenum disulfide-decorated reduced-graphene oxide nanosheets for use in high electrochemical performance supercapacitors[J]. J. Energy Storage, 2022,52104991. doi: 10.1016/j.est.2022.104991

  • 加载中
    1. [1]

      Binyang QinMengqi WangShimei WuYining LiChilin LiuYufei ZhangHaosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921

    2. [2]

      Jingqi Ma Huangjie Lu Junpu Yang Liangwei Yang Jian-Qiang Wang Xianlong Du Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275

    3. [3]

      Zhe WangLi-Peng HouQian-Kui ZhangNan YaoAibing ChenJia-Qi HuangXue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570

    4. [4]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    5. [5]

      Zhenqiang GuoHuicong YangQian WeiShengjun XuGuangjian HuShuo BaiFeng Li . Dual-additives enable stable electrode-electrolyte interfaces for long life Li-SPAN batteries. Chinese Chemical Letters, 2024, 35(5): 108622-. doi: 10.1016/j.cclet.2023.108622

    6. [6]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    7. [7]

      Xinyu Huai Jingxuan Liu Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158

    8. [8]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    9. [9]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    10. [10]

      Rui Deng Wenjie Jiang Tianqi Yu Jiali Lu Boyao Feng Panagiotis Tsiakaras Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290

    11. [11]

      Di Wang Qing-Song Chen Yi-Ran Lin Yun-Xin Hou Wei Han Juan Yang Xin Li Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346

    12. [12]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    13. [13]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    14. [14]

      Zhenjie YangChenyang HuXuan PangXuesi Chen . Sequence design in terpolymerization of ε-caprolactone, CO2 and cyclohexane oxide: Random ester-carbonate distributions lead to large-span tunability. Chinese Chemical Letters, 2024, 35(5): 109340-. doi: 10.1016/j.cclet.2023.109340

    15. [15]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    16. [16]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    17. [17]

      Lili WangYa YanRulin LiXujie HanJiahui LiTing RanJialu LiBaichuan XiongXiaorong SongZhaohui YinHong WangQingjun ZhuBowen ChengZhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011

    18. [18]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    19. [19]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    20. [20]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

Metrics
  • PDF Downloads(1)
  • Abstract views(45)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return