Citation: Ting WANG, Peipei ZHANG, Shuqin LIU, Ruihong WANG, Jianjun ZHANG. A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134 shu

A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors

Figures(3)

  • A 1D coordination polymer (CP), (TBA) [Bi(bp4do)Br4] (1), was synthesized by the assembly of 4, 4' - bipyridine -N, N'-dioxide (bp4do) and Bi3+ (TBA+=tetrabutylammonium). 1 exhibits a red luminescence with a quantum yield of up to 69%. A solid-state thin-film sensor (1/PVP) with extremely high luminescence stability was prepared by combining 1 with polyvinyl pyrrolidone (PVP). 1/PVP has a wide - range sensing capability for 11 NH3/amine vapors with rapid response. During the sensing process, its luminescence color changed from red to blue, which was easy for naked -eye observation. The sensing mechanism is NH3/amine-induced collapse of the framework of 1. Furthermore, 1/PVP has been successfully applied to monitoring food freshness such as meat/aquatic products.
  • 加载中
    1. [1]

      Visciano P, Schirone M, Paparella A. An overview of histamine and other biogenic amines in fish and fish products[J]. Foods, 2020,9(12)1795. doi: 10.3390/foods9121795

    2. [2]

      Bulushi I A, Poole S, Deeth H C, Dykes G A. Biogenic amines in fish: Roles in intoxication, spoilage, and nitrosamine formation-A review[J]. Crit. Rev. Food Sci., 2009,49(4):369-377. doi: 10.1080/10408390802067514

    3. [3]

      An D, Chen Z Q, Zheng J C, Chen S Y, Wang L, Huang Z Y, Weng L. Determination of biogenic amines in oysters by capillary electrophoresis coupled with electrochemiluminescence[J]. Food Chem., 2015,168:1-6. doi: 10.1016/j.foodchem.2014.07.019

    4. [4]

      Vasconcelos H, De Almeida J M M M, Matias A, Saraiva C, Jorge P A S, Coelho L C C. Detection of biogenic amines in several foods with different sample treatments: An overview[J]. Trends Food Sci. Technol, 2021,113:86-96. doi: 10.1016/j.tifs.2021.04.043

    5. [5]

      Ahangari H, Kurbanoglu S, Ehsani A, Uslu B. Latest trends for biogenic amines detection in foods: Enzymatic biosensors and nanozymes applications[J]. Trends Food Sci. Technol., 2021,112:75-87. doi: 10.1016/j.tifs.2021.03.037

    6. [6]

      Miao X, Wu C X, Li F, Zhang M. Fast and visual detection of biogenic amines and food freshness based on ICT-induced ratiometric fluores-cent probes[J]. Adv. Funct. Mater., 2023,332212980. doi: 10.1002/adfm.202212980

    7. [7]

      WANG K M, ZHAO X, BAI X L, DONG Y Q, FAN R F, YU H M, TANG H J, MA Y L. A fluorescence sensor based on Cd(Ⅱ) coordination polymer for recognition of nitrofurantoin[J]. Chinese J. Inorg. Chem., 2023,39(8):1587-1596.  

    8. [8]

      Liu X F, Zhang X Y, Li R F, Du L Y, Feng X, Ding Y Q. A highly sensitive and selective"turn off - on"fluorescent sensor based on Sm - MOF for the detection of tertiary butylhydroquinone[J]. Dyes Pigment., 2020,178108347. doi: 10.1016/j.dyepig.2020.108347

    9. [9]

      Jiang X L, Liu Y H, Wu P Y, Wang L, Wang Q Y, Zhu G Z, Li X L, Wang J. A metal-organic framework with a 9 -phenylcarbazole moiety as a fluorescent tag for picric acid explosive detection: Collaboration of electron transfer, hydrogen bonding and size matching[J]. RSC Adv., 2014,4(88):47357-47360. doi: 10.1039/C4RA07067D

    10. [10]

      HUANG J X, ZHAO H, LIU S Q, ZHANG J J. Two - dimensional luminescent coordination polymer based on dinuclear {Zn2(COO)4} second buildings units: Crystal structure and detection of Fe3+[J]. Chinese J. Inorg. Chem., 2021,37(8):1513-1518.  

    11. [11]

      Yin Y J, Fang W J, Liu S Q, Zhang J J. A new bio - metal - organic framework: Synthesis, crystal structure and selectively sensing of Fe(Ⅲ) ion in aqueous medium[J]. Chin. J. Struct. Chem., 2021,40(11):1456-1460.

    12. [12]

      ZHANG L W, LIU S Q, ZHANG P P, NI A Y, ZHANG J J. Synthesis, crystal structure, and detection of acidic amino acids of a Cd(Ⅱ) metal-organic framework based on 5-((naphthalen-1-ylmethyl)amino) isophthalic acid[J]. Chinese J. Inorg. Chem., 2022,38(9):1871-1877.  

    13. [13]

      Jia P, He X M, Yang J Y, Sun X Y, Bu T, Zhuang Y T, Wang L. Dual-emission MOF - based ratiometric platform and sensory hydrogel for visible detection of biogenic amines in food spoilage[J]. Sens. Actuator B-Chem., 2023,374132803. doi: 10.1016/j.snb.2022.132803

    14. [14]

      Othong J, Boonmak J, Wannarit N, Kielar F, Puangmali T, Phanchai W, Youngme S. Dual mode in a metal - organic framework based mixed matrix membrane for discriminative detection of amines: Vapoluminescent and vapochromic response[J]. Sens. Actuator B - Chem., 2021,34330066.

    15. [15]

      Gao X, Nie P, Li P R, Zheng Z, Gu Y, Cheng J S, Shen Y Z. Silver metallization-triggered liposome-embedded AIE fluorophore for dual-mode detection of biogenic amines to fight food freshness fraud[J]. Food Chem., 2023,429136961. doi: 10.1016/j.foodchem.2023.136961

    16. [16]

      Wang Q X, Li G. Bi(Ⅲ) MOFs: Syntheses, structures and applica-tions[J]. Inorg. Chem. Front., 2021,8(3):572-589. doi: 10.1039/D0QI01055C

    17. [17]

      Sheldrick G M. Crystal structure refinement with SHELXL[J]. Acta Crystallogr. Sect. C, 2015,C71:3-8.

    18. [18]

      Toma O, Allain M, Meinardi F, Forni A, Botta C, Mercier N. Bismuth-based coordination polymers with efficient aggregation-induced phosphorescence and reversible mechanochromic luminescence[J]. Angew. Chem. Int. Ed., 2016,55(28):7998-8002. doi: 10.1002/anie.201602602

  • 加载中
    1. [1]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    2. [2]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    3. [3]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    4. [4]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    5. [5]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    6. [6]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    7. [7]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    8. [8]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    9. [9]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    10. [10]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    11. [11]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    12. [12]

      Rui ChengXin HuangTingting ZhangJiazhuang GuoJian YuSu Chen . Solid superacid catalysts promote high-performance carbon dots with narrow-band fluorescence emission for luminescence solar concentrators. Chinese Chemical Letters, 2024, 35(8): 109278-. doi: 10.1016/j.cclet.2023.109278

    13. [13]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    14. [14]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    15. [15]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    16. [16]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    17. [17]

      Zihao WangJing XueZhicui SongJianxiong XingAijun ZhouJianmin MaJingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489

    18. [18]

      Xuejie GaoXinyang ChenMing JiangHanyan WuWenfeng RenXiaofei YangRuncang Sun . Long-lifespan thin Li anode achieved by dead Li rejuvenation and Li dendrite suppression for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109448-. doi: 10.1016/j.cclet.2023.109448

    19. [19]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    20. [20]

      Panke ZhouHong YuMun Yin CheeTao ZengTianli JinHongling YuShuo WuWen Siang LewXiong Chen . Electron push-pull effects induced performance promotion in covalent organic polymer thin films-based memristor for neuromorphic application. Chinese Chemical Letters, 2024, 35(5): 109279-. doi: 10.1016/j.cclet.2023.109279

Metrics
  • PDF Downloads(2)
  • Abstract views(243)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return